Boosting the Structural and Electrochemical Stability of Chloride-Ion-Conducting Perovskite Solid Electrolytes by Alkali Ion Doping.

Adv Mater

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Functional Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 211816, China.

Published: January 2025

The use of chloride-based solid electrolytes derived from Lewis acid‒base reactions enables the construction of various new rechargeable batteries, such as chloride ion batteries (CIBs). However, a critical problem with these electrolytes is their poor stability under low-temperature, moist, or electrochemical conditions, which can lead to deterioration of the phase structure and a loss of ion conduction. Herein, the robust cubic structure of tin-based perovskite chloride-a chloride ion conductor-is achieved by alkali ion doping at the tin site via direct mechanical milling. The as-prepared cubic CsSnNaCl (CSNC) electrolyte exhibits outstanding structural stability over a broad temperature range of 213-473 K or under a high relative humidity of up to 90%, at which the typical chloride electrolytes previously reported deteriorate because of moisture. Importantly, mild annealing can modify the microstructure of the CSNC, resulting in a two fold increase in ionic conductivity and an increase in electrochemical stability, which is superior to those of other chloride electrolytes reported in previous studies. The effective chloride-ion transfer and wide electrochemical window of the CSNC are further demonstrated in different solid-state CIBs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202411605DOI Listing

Publication Analysis

Top Keywords

electrochemical stability
8
solid electrolytes
8
alkali ion
8
ion doping
8
chloride ion
8
chloride electrolytes
8
electrolytes reported
8
electrolytes
5
ion
5
boosting structural
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!