A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

ToMCCA: a Toy Monte Carlo Coalescence Afterburner. | LitMetric

ToMCCA: a Toy Monte Carlo Coalescence Afterburner.

Eur Phys J C Part Fields

Physics Department, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching b. München, Germany.

Published: November 2024

Antinuclei in our Galaxy may stem either from annihilation or decay of dark matter, or from collisions of cosmic rays with the interstellar medium, which constitute the background of indirect dark matter searches. Understanding the formation mechanism of (anti)nuclei is crucial for setting limits on their production in space. Coalescence models, which describe the formation of light nuclei from final-state interaction of nucleons, have been widely employed in high-energy collisions. In this work, we introduce ToMCCA (y onte arlo oalescence fterburner), which allows for detailed studies of the nuclear formation processes without the overload of general-purpose event generators. ToMCCA contains parameterizations of the multiplicity dependence of the transverse momentum distributions of protons and of the baryon-emitting source size, extracted from ALICE measurements in pp collisions at TeV, as well as of the event multiplicity distributions, taken from the EPOS event generator. ToMCCA provides predictions of the deuteron transverse momentum distributions, with agreement of with the experimental data. The results of ToMCCA show that the coalescence mechanism in pp collisions depends only on the event multiplicity, not on the collision system or its energy. This allows the model to be utilized for predictions at lower center-of-mass collision energies, which are the most relevant for the production of antinuclei from processes related to dark matter. This model can also be extended to heavier nuclei as long as the target nucleus wavefunction and its Wigner function are known.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531428PMC
http://dx.doi.org/10.1140/epjc/s10052-024-13486-yDOI Listing

Publication Analysis

Top Keywords

dark matter
12
transverse momentum
8
momentum distributions
8
event multiplicity
8
tomcca
5
tomcca toy
4
toy monte
4
monte carlo
4
carlo coalescence
4
coalescence afterburner
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!