Purpose: The impact of visual deprivation on retinal structure is widely debated. Experimental models, like monocular deprivation through lid suture, provide insights into the consequences of lacking visual experience during development. This deprivation delays primary visual cortex (CV1) maturation due to improper neural connection consolidation, which remains plastic beyond the critical period. However, few studies have used Optical Coherence Tomography (OCT) to investigate structural alterations in the retina of animal models following monocular deprivation. Instead, some studies have focused on the ganglion cell layer using post-mortem histological techniques in amblyopia models induced by monocular deprivation.

Methods: In this study, we used Cliff test to assess stereoscopic vision and spectral domain optical coherence tomography (SD-OCT) to evaluate retinal changes in an in vivo model of visual deprivation treated with Transcranial Direct Current Stimulation (tDCS).

Results: The depth perception test initially revealed differences between individuals with amblyopia and the control group. However, after 8 tDCS sessions, amblyopic subjects matched the control group's performance, which remained stable Additionally, significant changes were observed in retinal structures post-tDCS treatment. Specifically, the thickness of the Nerve Fiber Layer + Ganglion Cell Layer + Inner Plexiform Layer (NFL+GCL+IPL) increased significantly in amblyopic eyes (p<0.001). Moreover, significant retinal thickening, including the Nerve Fiber Layer + Ganglion Cell Layer + Inner Plexiform Layer (NFL+GCL+IPL) and the entire retina, was observed post-tDCS treatment (p<0.05), highlighting the critical role of tDCS in ameliorating amblyopia. Additionally, treated animals exhibited reduced thickness in the Inner Nuclear Layer (INL) and Outer Nuclear Layer (ONL).

Conclusion: tDCS treatment effectively restores amblyopic individuals' stereoscopic vision, aligning their performance with controls, while impacting retinal structure, highlighting its potential in ameliorating amblyopia's visual deficits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533879PMC
http://dx.doi.org/10.2147/EB.S474573DOI Listing

Publication Analysis

Top Keywords

transcranial direct
8
direct current
8
current stimulation
8
stereoscopic vision
8
retinal structure
8
visual deprivation
8
models monocular
8
monocular deprivation
8
optical coherence
8
coherence tomography
8

Similar Publications

High definition transcranial direct current stimulation as an intervention for cognitive deficits in Alzheimer's dementia: A randomized controlled trial.

J Prev Alzheimers Dis

February 2025

Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA; School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA.

Background: Recent disease-modifying treatments for Alzheimer's disease show promise to slow cognitive decline, but show no efficacy towards reducing symptoms already manifested.

Objectives: To investigate the efficacy of a novel noninvasive brain stimulation technique in modulating cognitive functioning in Alzheimer's dementia (AD).

Design: Pilot, randomized, double-blind, parallel, sham-controlled study SETTING: Clinical research site at UT Southwestern Medical Center PARTICIPANTS: Twenty-five participants with clinical diagnoses of AD were enrolled from cognition specialty clinics.

View Article and Find Full Text PDF

Background: Sports fatigue in soccer athletes has been shown to decrease neural activity, impairing cognitive function and negatively affecting motor performance. Transcranial direct current stimulation (tDCS) can alter cortical excitability, augment synaptic plasticity, and enhance cognitive function. However, its potential to ameliorate cognitive impairment during sports fatigue remains largely unexplored.

View Article and Find Full Text PDF

: Multiple sclerosis (MS) is the most prevalent incurable nontraumatic neurological disability in young individuals. It causes numerous symptoms, including tingling, fatigue, muscle spasms, cognitive deficits, and neuropsychiatric disorders. This disease significantly worsens quality of life (QoL), and this dimension of general functioning provides valuable information about the effectiveness of treatment and well-being.

View Article and Find Full Text PDF

Effect of Eight-Week Transcranial Direct-Current Stimulation Combined with Lat Pull-Down Resistance Training on Improving Pull-Up Performance for Male College Students.

Life (Basel)

January 2025

Sport and Health Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Physical Education Department, Tongji University, Shanghai 200092, China.

The aim of this study was to investigate the effects and potential mechanisms of 8-week transcranial direct-current stimulation (tDCS) combined with resistance training (RT) on pull-up performance in male college students. Twenty-five male college students were randomly assigned to either RT combined with anodal tDCS stimulation (RT + tDCS) or RT alone (RT). Participants of both groups engaged in lat pull-down training programs for 8 weeks, with the RT + tDCS group receiving 20 min tDCS before each RT session.

View Article and Find Full Text PDF

Background: Innovative treatments for paranoia, which significantly impairs social functioning in schizophrenia (SCZ), are urgently needed. The pathophysiology of paranoia implicates the amygdala-prefrontal (PFC) circuits; thus, this study systematically investigated whether transcranial direct current stimulation (tDCS) to the ventrolateral PFC can attenuate paranoia and improve social functioning in SCZ.

Methods: A double-blind, within-subjects, crossover design was used to compare active vs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!