Background: is an opportunistic pathogen causing nosocomial infections, classified into carbapenem-sensitive and carbapenem-resistant strains. Understanding the virulence factors and antibiotic resistance of these strains is essential for effective clinical management.

Objective: This study compared the virulence genes and antibiotic resistance profiles of 50 CSKP and 50 CRKP strains, examining their expression under antibiotic pressure and the mechanisms contributing to their pathogenicity.

Methods: Virulence genes (, , , , , , ) were detected in both strains using polymerase chain reaction (PCR). Antibiotic susceptibility testing established minimum inhibitory concentrations (MICs) for key antibiotics. Gene expression analysis was performed with quantitative reverse transcription PCR (qRT-PCR) after 10 days of antibiotic exposure.

Results: CSKP strains exhibited significantly higher positivity rates for virulence genes compared to CRKP strains. CRKP strains predominantly expressed resistance genes , , and , whereas no resistance genes were found in CSKP. Antibiotic susceptibility tests showed increased MICs, particularly for ciprofloxacin and imipenem, following antibiotic induction. CSKP demonstrated elevated expression of and , while CRKP showed increased expression of , and after antibiotic exposure.

Conclusion: This study highlights the intricate relationship between virulence and resistance in . CSKP strains show strong virulence factor expression, while CRKP strains adapt to antibiotic pressure through altered gene expression patterns. These findings underscore the urgent need for continuous surveillance and innovative therapeutic strategies to combat multidrug-resistant infections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11532078PMC
http://dx.doi.org/10.3389/fmicb.2024.1498779DOI Listing

Publication Analysis

Top Keywords

crkp strains
20
antibiotic resistance
12
virulence genes
12
antibiotic
10
strains
10
antibiotic induction
8
cskp crkp
8
expression antibiotic
8
antibiotic pressure
8
antibiotic susceptibility
8

Similar Publications

Emerging carbapenem-resistant in a tertiary care hospital in Lima, Peru.

Microbiol Spectr

January 2025

Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.

The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.

View Article and Find Full Text PDF

, a major opportunistic pathogen, causes severe infections in both community and healthcare settings, especially in intensive care units (ICUs), where multidrug-resistant (MDR) strains, such as carbapenem-resistant (CRKP), pose significant treatment challenges. The rise in hypervirulent (hvKP) with enhanced virulence factors complicates management further. The ST11 clone, prevalent in China, exhibits both resistance and virulence traits, contributing to hospital outbreaks.

View Article and Find Full Text PDF

: The increased prevalence of antibiotic resistance among Gram-negative bacteria presents a severe public health challenge, leading to increased mortality rates, prolonged hospital stays, and higher medical costs. In Greece, the issue of multidrug-resistant Gram-negative bacteria is particularly alarming, exacerbated by overuse of antibiotics and inadequate infection control measures. This study aimed to detect the prevalence of extensively drug-resistant (XDR) Gram-negative bacteria in a tertiary hospital in Western Greece over the last eight years from 2016 to 2023.

View Article and Find Full Text PDF

Genomic characterization of ST11-KL25 hypervirulent KPC-2-producing multidrug-resistant from China.

iScience

December 2024

Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.

The global prevalence of ST11 hypervirulent carbapenem-resistant (hv-CRKP) isolates has been increasingly documented, yet genomic characterization of this clone remains insufficiently explored. Here, we report a clinical ST11-KL25 hv-CRKP strain (KP156) that exhibited resistance to multiple antibiotics and demonstrated hypervirulence in a mouse infection model. Whole-genome sequencing revealed that KP156 harbored one virulence plasmid (pKP156-Vir) and two resistance plasmids (pKP156-KPC and pKP156-tetA).

View Article and Find Full Text PDF

Effect of Tanreqing injection on multidrug resistance organisms: A test-negative case-control study and network pharmacology analysis.

Phytomedicine

December 2024

Institute of Integrated Traditional Chinese and Western Medicine, Chinese Evidence-based Medicine Center and Cochrane China Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China; NMPA Key Laboratory for Real World Data Research and Evaluation in Hainan, Chengdu, 610041, China; Sichuan Center of Technology Innovation for Real World Data, Chengdu, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China. Electronic address:

Background: Multidrug resistance organisms (MDROs) pose a major threat in intensive care units (ICUs). Although in vitro studies suggested that Tanreqing (TRQ) was effective against MDROs, evidence about TRQ injection usage and its real-world effectiveness is lacking.

Purpose: This study aimed to investigate treatment pattern and real-world effectiveness of TRQ against MDRO infections among ICU patients being treated with antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!