Surface Enhanced Raman Spectroscopy (SERS) is a highly sensitive analytical technique used for fingerprint recognition of molecular samples. The SERS effect, which enhances Raman scattering signals, has been the subject of extensive research over the past few decades. More recently, the commercialization of portable Raman spectrometers has brought SERS closer to real-world applications. The aim of the study was to enhance their performance, properties, and biocompatibility for potential use as SERS substrates. The synthesis and characterization of MoS and SnS nanoparticles are described, along with the functionalization process using l-cysteine. The detection and identification of () bacteria using MoS and SnS as SERS substrates are also investigated. The results demonstrate the successful functionalization and characterization of the nanostructures, indicating their potential as SERS substrates. The abstract highlights the importance of developing cost-effective and environmentally friendly disposable analysis chips with high accuracy and specificity for practical SERS applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533536 | PMC |
http://dx.doi.org/10.1039/d4ra05315j | DOI Listing |
Food Chem
December 2024
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China. Electronic address:
In this work, a series of three-dimensional (3D) SERS substrate were successfully fabricated by assembling silver nanoparticles (AgNPs) onto a porous gelatin sponge (GS) for highly sensitive thiram residues detection in vegetables. These 3D micro-nanostructures could induce the sufficient surface plasmon resonance (SPR) effect of noble metals on their surface and achieve high enrichment of pollutant molecules. As crystal violet (CV) was used as a probe molecule, the lowest CV solution could be detected at 10 M, and the enhancement factor (EF) was calculated to be 9.
View Article and Find Full Text PDFMikrochim Acta
December 2024
School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.
View Article and Find Full Text PDFAnal Chem
December 2024
College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of advanced Oriented Chemical Engineer, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, Fujian 350117, China.
Surface-enhanced Raman spectroscopy (SERS) provides a rapid and nondestructive method for biological plasma analysis, offering unparalleled sensitivity and specificity. However, most current studies predominantly employ the drop-cast method, where liquid samples are dried on the SERS substrate for spectral recording. While effective, this method is both time-consuming and inconsistent.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Science, Xihua University, Chengdu 610039, PR China. Electronic address:
ACS Appl Mater Interfaces
December 2024
Department of Chemical Engineering, Bogazici University, TR-34342 Istanbul, Türkiye.
A new member is incorporated into the SERS active materials family daily as a consequence of advances in materials science. Furthermore, it has been demonstrated that MXenes, which display remarkable physicochemical characteristics, are also encompassed within this family. This Review offers a comprehensive and systematic assessment of the potential of MXene structures in the context of SERS applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!