AI Article Synopsis

  • Group A rotaviruses (RVA) are a leading cause of diarrhea in children under 5, but vaccination has reduced instances and deaths.
  • Recent challenges include decreasing efficacy of current rotavirus vaccines and new virus strains, highlighting the need for improved vaccines.
  • This study explores using nanoparticles to enhance the immune response to rotavirus proteins, showing promise for developing a next-generation broad-spectrum vaccine.

Article Abstract

Group A rotaviruses (RVA) remain one of the dominant pathogens causing diarrhea in children under 5 years of age worldwide, despite a sharp decrease of RVA-associated diarrhea and mortality since the introduction of rotavirus vaccines. The decreased effectiveness of live attenuated rotavirus vaccines, coupled with the emergence of new rotavirus genotypes and the risk of cross-species virus transmission, underscores the necessity to develop more effective and broad-spectrum rotavirus vaccines. In this study, we utilized nanoparticles coupled with the SpyCatcher-SpyTag system to effectively display the truncated VP8-1 protein. The modular display of the monovalent VP8-1 proteins markedly increased the immunogenicity of VP8-1. Furthermore, the bivalent display of VP8-1 proteins from simian rotavirus SA11 and lamb rotavirus LLR on the same particle not only increased immunogenicity against homotypic antigens but also elicited robust heterotypic immune responses and conferred effective protection against a distant heterotypic rotavirus with sequence identities of only 62%-66% in an adult mouse model. Therefore, mosaic VP8 nanoparticles could be considered as a viable strategy for the development of the next-generation broad-spectrum rotavirus vaccine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c07061DOI Listing

Publication Analysis

Top Keywords

rotavirus vaccines
12
rotavirus
9
immune responses
8
heterotypic rotavirus
8
broad-spectrum rotavirus
8
vp8-1 proteins
8
increased immunogenicity
8
vp8 mosaic
4
mosaic nanoparticles
4
nanoparticles elicit
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!