A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis. | LitMetric

Autophagy is essential for somatic embryogenesis in citrus through regulating amyloplast degradation and lipid homeostasis.

New Phytol

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.

Published: January 2025

Autophagy is a conserved degradation pathway that regulates the clearance of paternal substrate at the early embryogenesis stage of animals. However, its mode of action is likely different in plants, which can regenerate through apomixis without fertilisation. Somatic embryogenesis (SE) is a unique plant process widely used for plant propagation and germplasm utilisation. Here, we studied citrus as an example and found a higher autophagic activity after SE initiation. Interestingly, amyloplasts were frequently found inside autophagosomes, whereas the inhibition of autophagy blocks amyloplasts/starch degradation and hinders somatic embryo formation. Furthermore, the consumption of storage lipids was faster in autophagy mutants, suggesting lipid metabolism is activated when starch utilisation is blocked. Exogenous application of autophagy-inducing chemicals (e.g. spermidine) significantly promoted the formation of autophagosomes and increased SE efficiency, indicating a positive correlation between autophagy, energy metabolism, and somatic embryo formation in citrus. Taken together, our study unveils a pathway for the degradation of plant-specific organelles and provides an effective approach for plant propagation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/nph.20242DOI Listing

Publication Analysis

Top Keywords

somatic embryogenesis
8
plant propagation
8
somatic embryo
8
embryo formation
8
autophagy
5
autophagy essential
4
somatic
4
essential somatic
4
embryogenesis citrus
4
citrus regulating
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!