Background: Intrauterine growth restriction (IUGR) is associated with adverse metabolic outcomes during adulthood. Histone modifications and changes in DNA methylation-affected genes are important for fetal development. This study aimed to confirm the epigenetic mechanisms in IUGR.
Methods: IUGR models were established in Sprague-Dawley rats using a maternal nutritional restriction approach during pregnancy. The abundance of insulin-like growth factor 2 (IGF2), phosphoinositide 3-kinase (PI3K), AKT serine/threonine kinase 2 (AKT2), and PPAR gamma coactivator 1 alpha (PGC-1α) was examined by real-time polymerase chain reaction (RT-PCR) and Western blotting analysis. Chromatin immunoprecipitation RT-PCR was employed to analyze histone modification in CCCTC-binding factor (CTCF)1-4 binding sites of the IGF2/H19 imprinting control region (ICR). The methylation states of CTCF1-4 binding sites were studied by pyrosequencing.
Results: The IUGR models were constructed successfully. IGF2 mRNA abundance in the placenta, fetal liver, and newborn liver was decreased in the IUGR group (P <0.01). Meanwhile, as compared with the control group, the expression levels of AKT2, PI3K, and PGC-1α were lower in newborn and 8-week-old livers in the IUGR group (P <0.05). In addition, knocking down IGF2 reduced the protein expression levels of AKT2-P and PGC-1α (P <0.05). In CTCF binding sites 1-4 of the IGF2/H19 ICR, AcH3 enrichment was significantly lower in CTCF1-3 in newborn and 8-week-old IUGR rats. H3K4me3 enrichment was significantly lower in the CTCF1-4 of newborn and 8-week-old IUGR groups (P <0.01). H3K9me2 enrichment was significantly higher in the IUGR group (P <0.01). The CpG dinucleotide methylation levels of CTCF1 and CTCF3, but not those of CTCF2 and CTCF4 binding sites in IUGR rat fetal, 4-week old, and 8-week-old livers decreased significantly (P <0.05).
Conclusion: The methylation status and histone modification in the IGF2/H19 ICR are related to growth and lipid metabolism via the PGC-1α/PI3K/AKT2 pathway in IUGR rats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/CM9.0000000000003324 | DOI Listing |
Commun Biol
December 2024
Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice.
View Article and Find Full Text PDFChin Med J (Engl)
November 2024
Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China.
Background: Intrauterine growth restriction (IUGR) is associated with adverse metabolic outcomes during adulthood. Histone modifications and changes in DNA methylation-affected genes are important for fetal development. This study aimed to confirm the epigenetic mechanisms in IUGR.
View Article and Find Full Text PDFToxics
September 2024
Department of Obstetrics and Gynecology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96822, USA.
Objective: Bisphenol A and phthalate are known endocrine disruptors and capable of inducing epigenetic changes in the human population. However, their impact on the placenta is less well studied. Our objective was to measure the effect of exposure to bisphenol A and benzyl butyl phthalate in first-trimester HTR8-SVneo and third-trimester 3A-sub E trophoblast cells by profiling the DNA methylation pattern of the imprinting control region of the IGF2 (insulin-like growth factor) and H19 genes.
View Article and Find Full Text PDFCell Rep
September 2024
Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK; Department of Obstetrics and Gynaecology and National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK. Electronic address:
Mir483 is a conserved and highly expressed microRNA in placental mammals, embedded within the Igf2 gene. Its expression is dysregulated in a number of human diseases, including metabolic disorders and certain cancers. Here, we investigate the developmental regulation and function of Mir483 in vivo.
View Article and Find Full Text PDFPsychoneuroendocrinology
September 2024
Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational & Environmental Medicine, KU Leuven, Belgium.
Background: Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!