Objectives: Periodontitis (PD) has the potential to induce systemic changes that affect both physical and behavioral aspects. These alterations may be associated with changes in both the inflammatory profile and the oxidative stress status of individuals with PD. Therefore, we aimed to evaluate the effects of PD on oxidative stress, as well as on behavioral parameters and cognitive impairment, in a preclinical model.
Material And Methods: Twenty-four male Wistar rats were randomly assigned to PD and sham groups. PD was induced by the ligature protocol for 14 days. Behavioral tests were initiated on the 9th day of the experiment to evaluate anxious behavior and cognition (learning and memory). After euthanasia, oxidative stress was evaluated in the gums, blood, hippocampus, and amygdala. Alveolar bone loss, bone microstructure, and elemental compositions of the mandibular bone were also assessed.
Results: PD increased alveolar bone loss, reduced the calcium and phosphorus content in the mandibular bone, and increased anxiety-like behavior and cognitive decline (p < 0.05). Furthermore, PD significantly affected the redox balance, as evidenced by increased total antioxidant capacity (TAC) in the gingiva and hippocampus (p < 0.05). It also led to increased lipid peroxidation in the gingiva and erythrocytes (p < 0.05), decreased antioxidant defenses in erythrocytes (superoxide dismutase) and the hippocampus (catalase), and increased antioxidant activity (catalase) in the amygdala (p < 0.05).
Conclusion: PD resulted in cognitive alterations, including impairments in spatial learning and memory, as well as increased anxious behavior, likely due to redox imbalance in rats.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534646 | PMC |
http://dx.doi.org/10.1002/cre2.70017 | DOI Listing |
J Biochem Mol Toxicol
January 2025
Department of Medical Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey.
Neurodegenerative diseases are significant health concerns that have a profound impact on the quality and duration of life for millions of individuals. These diseases are characterized by pathological changes in various brain regions, specific genetic mutations associated with the disease, deposits of abnormal proteins, and the degeneration of neurological cells. As neurodegenerative disorders vary in their epidemiological characteristics and vulnerability of neurons, treatment of these diseases is usually aimed at slowing disease progression.
View Article and Find Full Text PDFPak J Pharm Sci
January 2025
Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Airlangga, University, Surabaya, Indonesia.
This study attempts to prove that the antioxidant effect of fucoxanthin nanoparticles can prevent streptozotocin-induced rat liver damage. Fucoxanthin nanoparticles are synthesized using the high-energy ball milling method. Dynamic Light Scattering (DLS) was then used to describe the sizes of the fucoxanthin nanoparticles.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
Department of Cardiology, Xinjiang Traditional Chinese Medicine Hospital, Xinjiang, China.
Schizophrenia (Heidelb)
January 2025
Xinjiang Clinical Medical Research Center of Mental Health, State Key Laboratory of Pathogenesis, Prevention, and Treatment of High Incidence Diseases in Central Asia, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
Oxidative stress (OS) is crucial in schizophrenia (SCZ) pathology. Ferroptosis, a recently discovered cell death pathway linked to OS, might contribute to the development of SCZ. This study investigated the association between ferroptosis markers and cognitive impairments in chronic SCZ patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry and Molecular Biology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan.
Age-related macular degeneration (AMD) is a major cause of vision loss among adults. We investigated the protective effects of passion fruit seed extract (PFSE) and its rich polyphenol piceatannol in an AMD cell model in which human retinal pigment epithelial ARPE-19 cells were exposed to hydrogen peroxide (HO). Using a cell viability WST-8 assay, we revealed that PFSE and piceatannol increased the cellular viability of ARPE-19 cells by 130% and 133%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!