A variety of cell death pathways play critical roles in the onset and progression of multiple diseases. Paraptosis, a unique form of programmed cell death, has gained significant attention in recent years. Unlike apoptosis and necrosis, paraptosis is characterized by cytoplasmic vacuolization, swelling of the endoplasmic reticulum and mitochondria, and the absence of caspase activation. Numerous natural products, synthetic compounds, and newly launched nanomedicines have been demonstrated to prime cell death through the paraptotic program and may offer novel therapeutic strategies for cancer treatment. This review summarizes recent findings, delineates the intricate network of signaling pathways underlying paraptosis, and discusses the potential therapeutic implications of targeting paraptosis in cancer treatment. The aim of this review is to expand our understanding of this unique cell death process and explore the potential therapeutic implications of targeting paraptosis in cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533606 | PMC |
http://dx.doi.org/10.1186/s12929-024-01089-4 | DOI Listing |
Front Biosci (Schol Ed)
December 2024
Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA.
Background: Alternative cleavage and polyadenylation (APA) is a crucial post-transcriptional gene regulation mechanism that regulates gene expression in eukaryotes by increasing the diversity and complexity of both the transcriptome and proteome. Despite the development of more than a dozen experimental methods over the last decade to identify and quantify APA events, widespread adoption of these methods has been limited by technical, financial, and time constraints. Consequently, APA remains poorly understood in most eukaryotes.
View Article and Find Full Text PDFFront Biosci (Schol Ed)
December 2024
Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.
Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
November 2024
Department of Breast Surgery, The First People's Hospital of Foshan, 528100 Foshan, Guangdong, China.
Objective: The current study aimed to develop an experimental approach for the direct co-culture of three-dimensional breast cancer cells using single-cell RNA sequencing (scRNA-seq).
Methods: The following four cell culture groups were established in the Matrigel matrix: the untreated Michigan Cancer Foundation (MCF)-7 cell culture group, the MCF-7 cell culture plus cisplatin group, the untreated co-culture group, and the cell co-culture plus cisplatin group. For cell co-culture, MCF-7 cells, human mammary fibroblasts, and human umbilical vein endothelial cells were mixed at a ratio of 1:1:1.
Front Biosci (Landmark Ed)
December 2024
Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, 8011 Christchurch, Aotearoa New Zealand.
Tumor-associated macrophages (TAMs) are innate immune cells that exert far reaching influence over the tumor microenvironment (TME). Depending on cues within the local environment, TAMs may promote tumor angiogenesis, cancer cell invasion and immunosuppression, or, alternatively, inhibit tumor progression via neoantigen presentation, tumoricidal reactive oxygen species generation and pro-inflammatory cytokine secretion. Therefore, TAMs have a pivotal role in determining tumor progression and response to therapy.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
December 2024
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 200011 Shanghai, China.
Most cervical cancers are related to the persistent infections of high-risk Human Papillomavirus (HPV) infections. Increasing evidence has witnessed the immunosuppressive effectiveness of HPV in the oncogenesis steps and progression steps. Here we review the immune response in HPV-related cervical malignancies and discuss the crosstalk between HPVs and the host immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!