Background: Continuous cropping of the same crop leads to land degradation. This is also called the continuous-cropping obstacle. Currently, intercropping tobacco with other crops can serve as an effective strategy to alleviate continuous cropping obstacles.
Results: In this study, tobacco K326 and insectary floral plants were used as materials, and seven treatments of tobacco monoculture (CK), tobacco intercropped with Tagetes erecta, Vicia villosa, Fagopyrum esculentum, Lobularia maritima, Trifolium repens, and Argyranthemum frutescens respectively, were set up to study their effects on rhizosphere soil chemical properties and composition and structure of rhizosphere soil microbial community of tobacco. The 16 S rRNA gene and ITS amplicons were sequenced using Illumina high-throughput sequencing. tobacco/insectary floral plants intercropping can influence rhizosphere soil chemical properties, which also change rhizosphere microbial communities. The CK and treatment groups tobacco rhizosphere soil microorganisms had significantly different genera, such as tobacco intercropping with T. repens and A. frutescens significantly increased the number of Fusarium and intercropping T. erecta, V. villosa, L. maritima, T. repens, and A. frutescens significantly increased the number of Sphingomonas and unknown Gemmatimonadaceae. Additionally, intercropping T. erecta, V. villosa and L. maritima changed the rhizosphere fungal and bacteria community and composition of tobacco and the positive correlation between tobacco rhizosphere the genera of fungi and bacterial were greater than CK. The pathway of the carbohydrate metabolism, amino acid metabolism, and energy metabolism in rhizosphere bacteria were significantly decreased after continuous cropping. Fungal symbiotic trophic and saprophytic trophic were significantly increased after intercropping V. villosa, L. maritima and plant pathogen and animal pathogen were increased after intercropping T. repens and A. frutescens. Additionally, bacterial and fungal communities significantly correlated with soil chemical properties, respectively.
Conclusion: This study reveals that intercropping tobacco with insectary floral plants, particularly T. erecta, V. villosa, L. maritima and A. frutescens significantly affects soil chemical properties and alters rhizosphere microbial communities, increasing the abundance of certain microbial genera. Additionally, intercropping enhances pathways related to carbohydrate, amino acid, and energy metabolism in rhizosphere bacteria. These findings suggest that intercropping could provide a promising strategy to overcome challenges associated with continuous tobacco cropping by regulating the rhizosphere environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11533348 | PMC |
http://dx.doi.org/10.1186/s12866-024-03597-7 | DOI Listing |
Front Microbiol
December 2024
State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
Introduction: Functional rhizosphere microbiomes (FRM) are critical for plant health and yield. However, the ecological succession of FRM and their links to plant genetic factors across the life cycle of perennial plants remain poorly understood.
Methods: This study profiled FRM, including plant-beneficial bacteria (PBB) and fungal plant pathogens (FPP), across different developmental stages of .
BMC Microbiol
December 2024
TCM (Traditional Chinese Medicine), Huzhou Central Hospital, Key Laboratory Cultivation Base of Zhejiang Province for the Development and Clinical Transformation of Immunomodulatory Drugs, Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, Zhejiang, China.
Background: Saffron (Crocus sativus L.) is a valuable herb. With the increasing demand for saffron, people are starting to focus on how to increase its yields.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
December 2024
Centro de Apoio Multidisciplinar, Universidade Federal do Amazonas, Manaus, AM 69067-005, Brasil.
Background: Actinobacteria are major producers of antibacterial and antifungal metabolites and are growing their search for substances of biotechnological interest, especially for use in agriculture, among other applications. The Amazon is potentially rich in actinobacteria; however, almost no research studies exist. Thus, we present a study of the occurrence and antifungal potential of actinobacteria from the rhizosphere of , a native South American plant and one that is economically useful in the whole of the Amazon.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Department of Life Sciences, GITAM School of Science, Gandhi Institute of Technology and Management, 530045 Visakhapatnam, Andhra Pradesh, India.
Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFPeerJ
December 2024
Institute of Traditional Chinese Medicine, Chengde Medical College, Chengde City, Hebei Province, China.
Rhizosphere microorganisms are important factors affecting herb quality and secondary metabolite accumulation. In this study, we investigated the diversity of rhizosphere microbial communities (bacteria and fungi) and their correlations with soil physicochemical properties and active compounds of (baicalin, oroxindin, baicalein, wogonin, and oroxylin A) from cultivated with three different origins high-throughput sequencing and correlation analysis to further clarify the role of soil factors in the accumulation of the active compounds of . The results are summarized as follows.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!