Numerical modeling the process of deep slab dehydration and magmatism.

Sci Rep

College of Transportation Science & Engineering, Nanjing Technology University, Zhongshan North Road 200, Nanjing, 180009, China.

Published: November 2024

This study uses a 2D high-resolution thermo-mechanical coupled model to investigate the dynamic processes of deep plate hydration, dehydration, and subsequent magmatic activity in ocean-continent subduction zones. We reveal the pathways and temporal evolution of water transport to the deep mantle during the subduction process. Plate dehydration plays a critical role in triggering partial melting of the deep mantle and related magmatic activity. Our study shows significant differences in the volumes of melt produced at different depths, with dehydration reactions in deeper regions being weaker compared to shallower ones. It takes a longer time to reach the suitable P-T conditions for hydrous melting in the deep mantle. The results highlight the geophysical significance of water transport in deep subduction zones and its role in magmatic processes, particularly in the formation of magma chambers beneath continental plates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535389PMC
http://dx.doi.org/10.1038/s41598-024-78193-wDOI Listing

Publication Analysis

Top Keywords

deep mantle
12
magmatic activity
8
subduction zones
8
water transport
8
transport deep
8
melting deep
8
deep
6
numerical modeling
4
modeling process
4
process deep
4

Similar Publications

Persistent but weak magnetic field at the Moon's midstage revealed by Chang'e-5 basalt.

Sci Adv

January 2025

State Key Laboratory of Lithospheric and Environmental Coevolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

The evolution of the lunar magnetic field can reveal the Moon's interior structure, thermal history, and surface environment. The mid-to-late-stage evolution of the lunar magnetic field is poorly constrained, and thus, the existence of a long-lived lunar dynamo remains controversial. The Chang'e-5 mission returned the heretofore youngest mare basalts from Oceanus Procellarum uniquely positioned at midlatitude.

View Article and Find Full Text PDF

Mantle oxidation by sulfur drives the formation of giant gold deposits in subduction zones.

Proc Natl Acad Sci U S A

December 2024

Frontiers Science Center for Deep-time Digital Earth, State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.

Oxidation of the sub-arc mantle driven by slab-derived fluids has been hypothesized to contribute to the formation of gold deposits in magmatic arc environments that host the majority of metal resources on Earth. However, the mechanism by which the infiltration of slab-derived fluids into the mantle wedge changes its oxidation state and affects Au enrichment remains poorly understood. Here, we present the results of a numerical model that demonstrates that slab-derived fluids introduce large amounts of sulfate (S) into the overlying mantle wedge that increase its oxygen fugacity by up to 3 to 4 log units relative to the pristine mantle.

View Article and Find Full Text PDF

Proteomics of the shell matrix proteins and functional analysis of Am13 and AmKaSPI from the shell of Archivesica marissinica.

Int J Biol Macromol

December 2024

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China. Electronic address:

Archivesica marissinica is a dominant species inhabiting the Haima cold seep in the South China Sea. However, the composition, characterization and specific functions of conserved and unique shell matrix proteins (SMPs) in A. marissinica remain unknown.

View Article and Find Full Text PDF

A deeper and hotter Martian core-mantle differentiation inferred from FeO partitioning.

Sci Bull (Beijing)

December 2024

State Key Laboratory of Lithospheric and Environmental Coevolution, University of Science and Technology of China, Hefei 230026, China; Deep Space Exploration Laboratory/School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.

The core-mantle differentiation process plays a pivotal role in redistributing material on a massive scale, shaping the long-term evolution of rocky planets. Understanding this process is crucial for gaining insights into the accretion and evolution of planets like Mars. However, the details of Mars's core-mantle differentiation remain poorly understood due to limited compositional data for its core and mantle.

View Article and Find Full Text PDF

Io experiences tidal deformation due to its eccentric orbit around Jupiter, which provides a primary energy source for Io's ongoing volcanic activity and infrared emission. The amount of tidal energy dissipated within Io is enormous and has been hypothesized to support the large-scale melting of Io's interior and the formation of a global subsurface magma ocean. If Io has a shallow global magma ocean, its tidal deformation would be much larger than in the case of a more rigid, mostly solid interior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!