Thermal equation of state of rhodium characterized by XRD in a resistively heated diamond anvil cell.

Sci Rep

Department of Applied Physics - Institute of Materials Science, Matter at High Pressure (MALTA) Consolider Team, University of Valencia, C/Dr. Moliner 50, Burjassot, 46100, Valencia, Spain.

Published: November 2024

The high-pressure and high-temperature structural, mechanical, and dinamical stability of rhodium has been investigated via synchrotron X-ray diffraction using a resistively heated diamond anvil cell and density functional theory. The isothermal compression data have been fitted with a Rydberg-Vinet equation of state (EoS) with best-fitting parameters =55.046(16) Å , = 251(3) GPa, and = 5.7(2). The thermal equation of state has been determined based upon the data collected following four different isotherms and has been fitted to a Holland and Powell thermal equation-of-state model with 3.36(7)x10 K . The measured equation of state and structural parameters have been compared to the results of ab initio simulations. The agreement between theory and experiments is generally quite good. The present results solve controversies between previous studies which reported values of the bulk modulus from 240 to 300 GPa.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535440PMC
http://dx.doi.org/10.1038/s41598-024-78006-0DOI Listing

Publication Analysis

Top Keywords

equation state
16
thermal equation
8
resistively heated
8
heated diamond
8
diamond anvil
8
anvil cell
8
state
4
state rhodium
4
rhodium characterized
4
characterized xrd
4

Similar Publications

DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis.

View Article and Find Full Text PDF

Nutritional epidemiology aims to link dietary exposures to chronic disease, but the instruments for evaluating dietary intake are inaccurate. One way to identify unreliable data and the sources of errors is to compare estimated intakes with the total energy expenditure (TEE). In this study, we used the International Atomic Energy Agency Doubly Labeled Water Database to derive a predictive equation for TEE using 6,497 measures of TEE in individuals aged 4 to 96 years.

View Article and Find Full Text PDF

The thermodynamic properties of frozen soil depend on its temperature state and ice content. Additionally, the permeability coefficient significantly affects both the temperature distribution and water movement. In this study, the dynamic variation of soil permeability coefficient with temperature is considered, the permeability coefficient is defined as a piecewise function with temperature as independent variable, and the hydrothermal coupling equation is established.

View Article and Find Full Text PDF

The quark-gluon plasma analysis relies on the heavy quark potential, which is influenced by the anisotropic plasma parameter temperature (t), and baryonic chemical potential (μ). Employing the generalized fractional derivative Nikiforov-Uvarov (GFD-NU) method, we solved the topologically-fractional Schrödinger equation. Two scenarios were explored: the classical model (α = β = 1) and the fractional model (α, β < 1).

View Article and Find Full Text PDF

Theory and simulations are used to demonstrate implementation of a variational Bayes algorithm called "active inference" in interacting arrays of nanomagnetic elements. The algorithm requires stochastic elements, and a simplified model based on a magnetic artificial spin ice geometry is used to illustrate how nanomagnets can generate the required random dynamics. Examples of tracking and PID control are demonstrated and shown to be consistent with the original stochastic differential equation formulation of active inference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!