To evaluate the COVID-19 infection risk and the effectiveness of countermeasures at mass-gathering events, we measured the dispersion and advective diffusion of artificial droplets and artificial droplet nuclei at the Tokyo Dome, Japan (capacity 55,000 people). We also measured and evaluated the effectiveness of wearing masks and increasing the space between seating areas. If people were seated facing forward, artificial droplets did not reach the mouths of surrounding people, suggesting low risk of droplet transmission. For an artificially generated cough or sneeze, the volume of droplets deposited on the hair, back of the neck, and back of the human in front, and the backs of the seats in front, decreased by two to three orders of magnitude when a mask was worn, regardless of the type of mask. However, when the mask was worn with the nose out, the amount deposited on the back of the seat in front was reduced by only 17%. Even in seats with the highest particle concentration in the vicinity of the source, only 0.097%-0.24% of the generated droplet nuclei (1.0-3.0 μm) from the source were inhaled. Our results suggest that the infection risk at the Tokyo Dome via droplet and airborne transmission was low.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535064 | PMC |
http://dx.doi.org/10.1038/s41598-024-76806-y | DOI Listing |
Environ Sci Technol
January 2025
Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China.
Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.
View Article and Find Full Text PDFSmall
January 2025
Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, Dalian, 116024, China.
To achieve efficient size tuning of printed microstructures on insulating substrates, an integrated process parameter intelligent optimization design framework for alternating current pulse modulation electrohydrodynamic (AC-EHD) printing is proposed for the first time. The framework is comprised of two stages: the construction of a prediction model and the acquisition of process parameters. The first stage employs the elk herd optimizer(EHO)-artificial neural network(ANN) to establish a mapping relationship between printing process parameters and the size of deposited droplets.
View Article and Find Full Text PDFFoods
December 2024
Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China.
Revealing how individual cells alter their secretions over time is crucial for understanding their responses to environmental changes. Key questions include: When do cells modify their functions and states? What transitions occur? Insights into the kinetic secretion trajectories of various cell types are essential for unraveling complex biological systems. This review highlights seven microfluidic technologies for time-resolved single-cell secretion analysis: 1.
View Article and Find Full Text PDFFood Res Int
January 2025
State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, Jiangxi 330047, China; Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China. Electronic address:
Biomimetic membrane was investigated as model systems to mimic the structure of milk fat globule membrane (MFGM) and to study the effects of thermal processing-induced changes in MFGM fractions on membrane morphology and physical properties. Molecular docking was utilized to screen xanthine oxidase (XO) as the MFGM protein most likely to bind to phospholipid molecules on MFGM. Fluorescence spectroscopy verified that XO formed stable complexes with DOPE, DPPC, and PS 18:0-18:1, with the strongest binding to DOPE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!