The risk of severe disease caused by co-infection with SARS-CoV-2 and influenza virus (IAV) raises an annual concern for global public health. Extracellular vesicles (EV) derived from mesenchymal stem cells (MSC) possess anti-inflammatory properties that can attenuate the inflammatory cytokine levels induced by viral infection. However, the effects of MSC-EV treatment on SARS-CoV-2 and IAV co-infection have not been elucidated. In the present study, we co-induced lung epithelial cells (EpiC) with SARS-CoV-2 Spike protein (S) and H1N1 influenza viral HA protein (HA) and found robust upregulation of inflammatory cytokines in comparison to those induced by either S or HA protein. Consequently, treatment of lung endothelial cells (EC) with conditioned medium from EpiC co-induced by both S and HA proteins resulted in increased apoptosis and impaired angiogenic ability, suggesting the effects of co-induction on epithelial-endothelial crosstalk. In addition, lung EpiC co-induced by both S and HA proteins showed paracrine effects on the recruitment of immune cells, including monocytes, macrophages and neutrophils. Of Note, EV derived from Wharton Jelly's MSC (WJ-EV) transferred miR-146a to recipient lung EpiC, which impaired TRAF6 and IRAK1, resulting in the downregulation of NF-κB pathway and secretion of inflammatory cytokines, rescuing the epithelial-endothelial crosstalk, and reducing the elevation of immune cell recruitment. Moreover, the anti-inflammatory properties of WJ-EV are affected by type 2 Diabetes Mellitus. WJ-EV derived from donors with type 2 Diabetes Mellitus contained less miR-146a and showed impaired ability to downregulate the NF-κB pathway and inflammatory cytokines in recipient cells. Taken together, our findings demonstrate the role of miR-146a in targeting the NF-κB pathway in the anti-inflammatory abilities of WJ-EV, which is a promising strategy to rescue the epithelial-endothelial crosstalk altered by co-infection with SARS-CoV-2 and IAV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11535355PMC
http://dx.doi.org/10.1038/s41598-024-77258-0DOI Listing

Publication Analysis

Top Keywords

inflammatory cytokines
12
epithelial-endothelial crosstalk
12
nf-κb pathway
12
mesenchymal stem
8
extracellular vesicles
8
sars-cov-2 influenza
8
influenza viral
8
co-infection sars-cov-2
8
anti-inflammatory properties
8
sars-cov-2 iav
8

Similar Publications

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

The intestinal barrier function is a critical defense mechanism in the human body, serving as both the primary target and initiating organ in cases of sepsis. Preserving the integrity of this barrier is essential for preventing complications and diseases, including sepsis and mortality. Despite this importance, the impact of resveratrol on intestinal barrier function remains unclear.

View Article and Find Full Text PDF

Background: The quality of life (QOL) of ovarian cancer patients is often impaired by refractory ascites. Cell-free and concentrated ascites reinfusion therapy (CART) is a palliative treatment for refractory ascites, but adverse events, such as fever, are problematic. Several cytokines have been suggested to be responsible for the adverse events, but they have not been investigated in detail.

View Article and Find Full Text PDF

Fowl typhoid (FT) poses a significant threat to the poultry industry and can cause substantial economic losses, especially in developing regions. Caused by Salmonella Gallinarum (SG), vaccination can prevent FT. However, existing vaccines, like the SG9R strain, have limitations, including residual virulence and potential reversion of pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!