Exosomes have been perceived as promising biomarkers for noninvasive cancer diagnosis and treatment monitoring. However, the sensitive and accurate quantification and phenotyping of exosomes remains challenging. Herein, a versatile electrochemiluminescence (ECL) aptasensor was proposed for the sensitive analysis of tumorous exosomes. Specifically, a ternary nanohybrid (Ru-HAuTiO), by covalently linking ECL luminophore Ru(dcbpy) with gold nanoparticles (AuNPs)-decorated hollow urchin-like TiO (HTiO), was ingeniously designed as a highly luminescent and self-enhanced ECL nanoemitter. Notably, the porous HTiO played an "all-rounder" role, including the carrier for ECL luminophores and AuNPs, coreaction accelerator, and specific exosome capturing scaffold through Ti-phosphate coordination interaction. On the other hand, a polydopamine modified covalent organic framework (PDA@COF) was employed as a quencher to remarkably attenuate the ECL of Ru-HAuTiO through a dual-quenching mechanism, and further labeled with a specific aptamer (Apt) of exosomal surface protein. Based on forming a Ru-HAuTiO/exosome/Apt-PDA@COF sandwich structure on the electrode, a "signal on-off" ECL platform for tumorous exosomes was constructed, realizing sensitive detection within the range of 3.1 × 10 particles/mL to 1 × 10 particles/mL and a low limit of detection of 1.41 × 10 particles/mL, achieving phenotypic profiling of surface proteins on different tumorous exosomes. This work provides a promising alternative method for the detection and analysis of exosomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13803 | DOI Listing |
J Cancer Res Ther
December 2024
Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Jinan, China.
Mesenchymal stem cells (MSCs) are a class of protocells that can differentiate into various cell types and have robust replication and renewal capabilities. MSCs secrete various nutritional factors to regulate the microenvironment of tumor tissues. The mechanism by which they inhibit or promote tumor growth may be closely related to MSC-derived exosomes (MSC-Exo).
View Article and Find Full Text PDFJ Transl Med
January 2025
The Comprehensive Breast Care Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.
View Article and Find Full Text PDFBMC Cancer
January 2025
Department of Respiratory Medicine, First Affiliated Hospital of Huzhou University, Huzhou University, Huzhou, Zhejiang, 313000, China.
Background: LINC00312 has shown to play a suppressive role in the development and progression of non-small cell lung cancer (NSCLC). However, the expression pattern and diagnostic role of circulating LINC00312 in NSCLC remain to be confused.
Methods: A total of 319 patients diagnosed with NSCLC and 180 healthy volunteers were enrolled from the First Affiliated Hospital of Huzhou University between January, 2022 and December, 2023.
BMC Cancer
January 2025
Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
Background: Colorectal cancer (CRC) is a common gastrointestinal cancer, and even though oxaliplatin chemotherapy is effective, there is a high likelihood of relapse, indicating the presence of oxaliplatin-resistant CRC. Therefore, it is crucial to comprehend the molecular mechanisms of oxaliplatin resistance and develop effective strategies to counter drug resistance. Numerous studies have demonstrated the close association between microRNAs (miRNAs) and drug resistance in CRC.
View Article and Find Full Text PDFOncogene
January 2025
Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, 27157, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!