Chirality is vital in many living species since it is responsible for structural iridescent coloration and plays a key role in light harvesting during natural photosynthesis. Developing photoactive materials with such chiral structures is a challenging but promising strategy for energy applications. Here, we present a straightforward method to establish an active photonic glass obtained through the co-condensation of tetramethyl orthosilicate (TMOS) and titanium diisopropoxide bis(acetylacetonate) (TAA) dissolved in a liquid crystal formed from cellulose nanocrystalline (CNC). The inorganic glass maintains a long range of chiral nematic ordering, displaying iridescent colors characterized by a Bragg peak reflection. The reflected wavelengths are tuned all over the UV-visible range, demonstrating that the replica of the chiral nematic structure generates photonic properties. Incorporation of gold nanoparticles (Au NPs) into the films is further performed by impregnation/chemical reduction. We show that the charge carrier density and photocatalytic H generation were amplified when the photonic band gap edges matched the absorbance of the TiO and localized surface plasmon resonance (LSPR) of AuNPs. This photocatalytic glass with chiral nematic ordering and a tunable photonic bandgap paves the way for the development of metamaterials with new applications, such as asymmetric photocatalysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724248 | PMC |
http://dx.doi.org/10.1002/chem.202402141 | DOI Listing |
Mater Horiz
January 2025
Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China.
Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Xiangtan University, College of Chemistry, CHINA.
Efficient circularly polarized luminescence (CPL) optical waveguides have significant potential for advancing photonic and optoelectronic devices. However, the development of CPL optical waveguides materials (OWMs) with low optical loss coefficient remains a considerable challenge. To overcome this, we design and synthesize CPL OWMs based on room-temperature phosphorescent liquid crystalline polymers (LCPs).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9, Canada. Electronic address:
This study explores the effect of sucrose addition on the properties of chiral nematic cellulose nanocrystal (CNC) films for potential food industry applications, including biodegradable packaging and food coloring. The addition of sucrose altered the films' structural color, shifting from blue in pure CNC films to aqua blue, green, yellow-green, and red with increasing sucrose concentrations (up to 21 %). Surface analysis revealed a reduction in contact angle from 96° to 48° due to sucrose's hydrophilic nature and smoother film surfaces.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China. Electronic address:
Multidirectional strain sensors are of technological importance for wearable devices and soft robots. Here, we report that flexible materials capable of multidirectional anisotropic strain sensing can be constructed leveraging diffusion-induced infiltration of monomers and in situ polymerization of metal ion-containing double network hydrogels in and on the surface of micro-corrugated chiral nematic cellulose nanocrystal/glucose films. Integrating the micro-corrugated cellulose nanocrystal/glucose chiral nematic films with ionic conductive hydrogels of PAA-co-AAm/sodium alginate/Al endows the materials with multidirectional mechanoelectrical resistivity and mechanochromism anisotropy.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Wallenberg Wood Science Center, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Electronic address:
Hypothesis: Charge-stabilized colloidal cellulose nanocrystals (CNCs) can self-assemble into higher-ordered chiral nematic structures by varying the volume fraction. The assembly process exhibits distinct dynamics during the isotropic to liquid crystal phase transition, which can be elucidated using X-ray photon correlation spectroscopy (XPCS).
Experiments: Anionic CNCs were dispersed in propylene glycol (PG) and water spanning a range of volume fractions, encompassing several phase transitions.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!