Background: Overall patients with melanoma liver metastasis (MLiM) have a dismal prognosis and poor responses to the standard of care treatment. Understanding the role of the tumour microenvironment (TME) is critical for discovering better strategies to overcome intrinsic therapy resistance in MLiM. The aim was to understand the crosstalk signalling pathways between hepatocytes and metastatic melanoma cells in the TME of MLiM.
Methods: Hepatocytes and melanoma tumour cells of MLiM were assessed using transcriptomic NanoString GeoMx digital spatial profiling (NGDSP) assay. Functional assays were performed using normal hepatocytes and MLiM-derived cell lines. Validation was performed using multiplex immunofluorescence.
Results: In NGDSP analysis adjacent normal hepatocytes (ANH) had higher CXCR4 and COL1A1/2 levels than distant normal hepatocytes (DNH), while melanoma cells had higher TNF-α levels. In vitro, MLiM cell lines released TNF-α which upregulated CXCR4 and CXCL12 levels in ANH. CXCL12 activated CXCR4, which triggered AKT and NFκB signalling pathways. Consequently, AKT signalling induced the upregulation of collagen type I. MLiM were significantly encircled by a shield of collagen, whereas other liver metastases showed reduced levels of collagen. Of all the liver metastasis analyzed, the presence of collagen in melanoma liver metastasis was associated with a reduction in tumour-infiltrating lymphocytes.
Conclusions: MLiM modified ANH to increase collagen production and created a physical barrier. The collagen barrier was associated with a reduction of immune cell infiltration which could potentially deter MLiM immune surveillance and treatment responses.
Highlights: Spatial analyses of melanoma liver metastasis show that adjacent normal hepatocytes have increased collagen-type I levels. Melanoma liver metastases tumour cells secrete enhanced levels of TNF-α to stimulate CXCR4/CXCL12 upregulation in adjacent normal hepatocytes. Activation of CXCR4 promotes AKT and NF-κB signalling pathways to promote collagen-type I secretion in adjacent normal hepatocytes. Elevated collagen levels were associated with reduced tumour-infiltrating lymphocytes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534464 | PMC |
http://dx.doi.org/10.1002/ctm2.70067 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, Jiangsu, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang 222005, China. Electronic address:
The intricate interaction among host, pathogen, and environment significantly influences aquatic health, yet the influence of hypoxic stress combined with bacterial infection on host response is understudied. Circular RNAs with stable closed-loop structures have emerged as important regulators in immunity, yet remain ill-defined in fish. In this study, we systematically explored the circRNA response in yellow catfish subjected to combined hypoxia-bacterial infection (HB) stress.
View Article and Find Full Text PDFAJP Rep
January 2025
Department of Pediatric Hematology-Oncology, Cooper Medical School of Rowan University, Camden, New Jersey.
Gestational alloimmune liver disease (GALD) is characterized by maternal IgG-directed fetal hepatocyte damage and can lead to severe liver failure and fetal or infant death. Moreover, GALD is associated with a near 90% risk of recurrence in subsequent pregnancies. We present a case of a newborn patient delivered to a 32-year-old G2P1000 mother who received prolonged antenatal intravenous immunoglobulin (IVIG) treatment during the current pregnancy due to the neonatal death of the first child from GALD-related liver failure.
View Article and Find Full Text PDFPLoS One
January 2025
University of California, San Diego, La Jolla, California, United States of America.
Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as nonalcoholic steatohepatitis (MASH), is a major risk factor for cirrhosis and hepatocellular carcinoma (HCC) and a leading cause of liver transplantation. MASH is caused by an accumulation of toxic fat molecules in the hepatocyte which leads to inflammation and fibrosis. Inadequate human "MASH in a dish" models have limited our advances in understanding MASH pathogenesis and in drug discovery.
View Article and Find Full Text PDFNat Metab
January 2025
State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
Nucleotide availability is crucial for DNA replication and repair; however, the coordinating mechanisms in vivo remain unclear. Here, we show that the circadian clock in the liver controls the activity of the pentose phosphate pathway (PPP) to support de novo nucleotide biosynthesis for DNA synthesis demands. We demonstrate that disrupting the hepatic clock by genetic manipulation or mistimed feeding impairs PPP activity in male mice, leading to nucleotide imbalance.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Ophthalmology, Tianjin Medical University General Hospital, International Joint Laboratory of Ocular Diseases (Ministry of Education), Tianjin Key Laboratory of Ocular Trauma, Tianjin Institute of Eye Health and Eye Diseases, China-U.K. "Belt and Road" Ophthalmology Joint Laboratory, Laboratory of Molecular Ophthalmology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin 300070, China.
Hepatitis C virus (HCV) infection is a major cause of chronic liver disease. Although interferon-free direct-acting antivirals have led to significant advancements in the treatment of HCV infection, the high genetic variability of the virus and the emergence of acquired drug resistance pose potential threats to their effectiveness. In this study, we develop a broad-spectrum aptamer-based proteolysis targeting chimera, designated dNS5B, which effectively degrades both pan-genotypic NS5B polymerase and drug-resistant mutants through ubiquitin proteasome system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!