MK-8189 is a novel phosphodiesterase 10A (PDE10A) inhibitor being evaluated in clinical studies for the treatment of schizophrenia. PDE10A is a cyclic nucleotide phosphodiesterase enzyme highly expressed in medium spiny neurons of the striatum. MK-8189 exhibits sub-nanomolar potency on the PDE10A enzyme and has excellent pharmaceutical properties. Oral administration of MK-8189 significantly increased cGMP and pGluR1 in rat striatal tissues. Activation of the dopamine D1 direct and D2 indirect pathways was demonstrated by detecting significant elevation of mRNA encoding substance P (Sub P) and enkephalin (ENK) after MK-8189 administration. The PDE10A tracer [H]MK-8193 was used determine the PDE10A enzyme occupancy (EO) required for efficacy in behavioral models. In the rat conditioned avoidance responding assay, MK-8189 significantly decreased avoidance behavior at PDE10A EO greater than ~48%. MK-8189 significantly reversed an MK-801-induced deficit in pre-pulse inhibition at PDE10A EO of ~47% and higher. Target engagement of MK-8189 in rhesus monkeys was examined with [C]MK-8193 in PET studies and plasma concentrations of 127nM MK-8189 yielded ~50% EO in the striatum. The impact of MK-8189 on cognitive symptoms was evaluated using the objective retrieval task in rhesus monkeys. MK-8189 significantly attenuated a ketamine-induced deficit in object retrieval performance at exposure that yielded ~29% PDE10A EO. These findings demonstrate the robust impact of MK-8189 on striatal signaling and efficacy in preclinical models of symptoms associated with schizophrenia. Data from these studies were used to establish the relationship between preclinical efficacy, plasma exposures, and PDE10A EO to guide dose selection of MK-8189 in clinical studies. We describe the primary pharmacology of MK-8189 a PDE10A inhibitor under evaluation for the treatment of schizophrenia. We report efficacy in preclinical models that have been used to characterize other PDE10A inhibitors and atypical antipsychotics. The PDE10A occupancy achieved by MK-8189 in behavioral studies was used to support dose selection in clinical trials. This work provides evidence to support exploration of higher levels of PDE10A occupancy in clinical trials to determine if this translates to improved efficacy in patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.124.002347 | DOI Listing |
J Pharmacol Exp Ther
November 2024
Schizophrenia, Merck & Co. Inc., United States.
Schizophr Res
August 2024
Merck & Co., Inc., Rahway, NJ, USA. Electronic address:
Background: PDE10A inhibition represents a potential mechanism for treating schizophrenia. PDE10A inhibitors increase cyclic nucleotides in striatal neurons, thereby mimicking the effects of dopamine receptor D2 antagonists and D1 agonists. We evaluated the PDE10A inhibitor MK-8189 for treating schizophrenia.
View Article and Find Full Text PDFJ Med Chem
February 2024
Astex Pharmaceuticals, 436 Cambridge Science Park, Milton Road, Cambridge CB4 0QA, United Kingdom.
This Perspective is the eighth in an annual series that summarizes successful fragment-to-lead (F2L) case studies published each year. A tabulated summary of relevant articles published in 2022 is provided, and features such as target class, screening methods, and ligand efficiency are discussed both for the 2022 examples and for the combined examples over the years 2015-2022. In addition, trends and new developments in the field are summarized.
View Article and Find Full Text PDFJ Lipid Res
August 2023
Neuroscience Department, Merck & Co., Inc., Rahway, NJ, USA.
Weight gain is a common harmful side effect of atypical antipsychotics used for schizophrenia treatment. Conversely, treatment with the novel phosphodiesterase-10A (PDE10A) inhibitor MK-8189 in clinical trials led to significant weight reduction, especially in patients with obesity. This study aimed to understand and describe the mechanism underlying this observation, which is essential to guide clinical decisions.
View Article and Find Full Text PDFJ Med Chem
January 2023
Discovery Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States.
PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!