Plant genotypes and processing technologies affect health properties of foods. How thermal processes with different sterilization values influence polyphenols in soymilk manufactured from different genotypes, particularly black soybean has not been well characterized. This study's aims were to investigate how one- and two-phase ultrahigh temperature (UHT) processing technologies, with wide differences of lethality (F 158.5 and 6.35, respectively), affected anti-prostate cancer DU145-cell properties of black soymilk compared to light-yellow-Proto soymilk. Phenolics were extracted from soymilk and used for chemical, cell cycle and apoptosis analyses. Total isoflavones and genistein in black soymilk were significantly higher than Proto soymilk by either processing methods. Compared to one-phase processing, two-phase produced higher gallic acid in both soybeans, and higher oxygen radical absorbance capacity (ORAC) in black soymilk. Soymilk processed from both genotypes by both UHT methods inhibited DU145 cells. Two-phase-UHT processed black soymilk was more effective than one-phase UHT-processed soymilk. IC values (mg/mL) of black and yellow soy extracts against prostate cancer cells differed only by 11%-25%, which were lower than the differences of total isoflavone (29%-33%) or genistein (>50% between two beans). The mechanism by which soymilk inhibited DU145 cell proliferation was through apoptosis as evidenced by cell cycle analyses and expressions of caspase-3, Bcl-2, and PARP-1 proteins. Antioxidant properties, isoflavones, and phenolic acids were negatively correlated with prostate-cancer-cell inhibition IC (p < 0.05) with ORAC having the highest coefficient (r = -0.98). Overall, two-phase-UHT processing of soybean would produce soymilk products with a higher health benefit than a one-phase UHT method. PRACTICAL APPLICATION: This study characterized the potential prostate cancer prevention effect of soymilk's phenolic extract in black soybean and compared with yellow soybean. The crude extract can be prepared much less costly than purified isoflavones and has potential to be developed into a dietary supplement. This study shows differences of soymilks made by continuous high-temperature processing of two soybean types and can serve as a scientific foundation for future clinical research and commercialization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1750-3841.17489 | DOI Listing |
Food Funct
January 2025
Graduate Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan.
J Food Sci
December 2024
Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Starkville, Mississippi, USA.
Plant genotypes and processing technologies affect health properties of foods. How thermal processes with different sterilization values influence polyphenols in soymilk manufactured from different genotypes, particularly black soybean has not been well characterized. This study's aims were to investigate how one- and two-phase ultrahigh temperature (UHT) processing technologies, with wide differences of lethality (F 158.
View Article and Find Full Text PDFHeliyon
June 2024
Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
Anthocyanins, considered as prebiotic ingredients for functional foods, were extracted from black soybean (BS), black grape (BG), black carrot (BCPm), and black rice (BR) using conventional solvent extraction (CSE) and microwave-assisted extraction (MAE). The study employed a split-plot design with CSE and MAE as main plot factors and anthocyanin extracts (AEs) as subplot factors. Anthocyanins were evaluated for stability (polymeric color, degradation index) and functionality (antioxidant capacity).
View Article and Find Full Text PDFUltrason Sonochem
October 2023
Department of Food Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Republic of Korea. Electronic address:
This study analyzed the effect of ultrasound treatment (up to 9 min, 20 kHz, 130 W) on the volatile compounds, total polyphenols, total flavonoids, and isoflavones (daidzein, genistein, daidzin, genistin, and glycitin) in soymilk processed with microwave-roasted (700 W for 270 s) black soybean (Glycine max (L.) Merr.).
View Article and Find Full Text PDFPrev Nutr Food Sci
June 2022
Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonbuk 54896, Korea.
Legumes are dicotyledonous plants, and they represent the third-largest plant family seeds distributed glo-bally. This study aimed to develop a lexicon for seven well-known legumes: kidney bean, mung bean, chickpea, green kernel black bean, black bean, soybean, and red bean. A sensory lexicon describing the aroma characteristics of legumes was developed, and the intensity of each aroma attribute was evaluated using a 15-point universal scale in Spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!