Defect Engineering with Rational Dopants Modulation for High-Temperature Energy Harvesting in Lead-Free Piezoceramics.

Nanomicro Lett

Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing, 100124, People's Republic of China.

Published: November 2024

High temperature piezoelectric energy harvester (HT-PEH) is an important solution to replace chemical battery to achieve independent power supply of HT wireless sensors. However, simultaneously excellent performances, including high figure of merit (FOM), insulation resistivity (ρ) and depolarization temperature (T) are indispensable but hard to achieve in lead-free piezoceramics, especially operating at 250 °C has not been reported before. Herein, well-balanced performances are achieved in BiFeO-BaTiO ceramics via innovative defect engineering with respect to delicate manganese doping. Due to the synergistic effect of enhancing electrostrictive coefficient by polarization configuration optimization, regulating iron ion oxidation state by high valence manganese ion and stabilizing domain orientation by defect dipole, comprehensive excellent electrical performances (T = 340 °C, ρ > 10 Ω cm and FOM = 4905 × 10 m N) are realized at the solid solubility limit of manganese ions. The HT-PEHs assembled using the rationally designed piezoceramic can allow for fast charging of commercial electrolytic capacitor at 250 °C with high energy conversion efficiency (η = 11.43%). These characteristics demonstrate that defect engineering tailored BF-BT can satisfy high-end HT-PEHs requirements, paving a new way in developing self-powered wireless sensors working in HT environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11534916PMC
http://dx.doi.org/10.1007/s40820-024-01556-5DOI Listing

Publication Analysis

Top Keywords

defect engineering
12
lead-free piezoceramics
8
wireless sensors
8
defect
4
engineering rational
4
rational dopants
4
dopants modulation
4
modulation high-temperature
4
high-temperature energy
4
energy harvesting
4

Similar Publications

Multiphoton and Harmonic Imaging of Microarchitected Materials.

ACS Appl Mater Interfaces

January 2025

Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States.

Microadditive manufacturing has revolutionized the production of complex, nano- to microscale components across various fields. This work investigates two-photon (2P) and three-photon (3P) fluorescence imaging, as well as third-harmonic generation (THG) microscopy, to examine periodic microarchitected lattice structures fabricated using multiphoton lithography (MPL). By immersing the structures in refractive index matching fluids, we demonstrate high-fidelity 3D reconstructions of both fluorescent structures using 2P and 3P microscopy as well as low-fluorescence structures using THG microscopy.

View Article and Find Full Text PDF

Ultrafast Synthesis of Oxygen Vacancy-Rich MgFeSiO Cathode to Boost Diffusion Kinetics for Rechargeable Magnesium-Ion Batteries.

Nano Lett

January 2025

National Innovation Center for Industry-Education Integration of Energy Storage Technology, College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.

Rechargeable magnesium ion batteries (RMBs) have drawn extensive attention due to their high theoretical volumetric capacity and low safety hazards. However, divalent Mg ions suffer sluggish mobility in cathodes owing to the high charge density and slow insertion/extraction kinetics. Herein, it is shown that an ultrafast nonequilibrium high-temperature shock (HTS) method with a high heating/quenching rate can instantly introduce oxygen vacancies into the olivine-structured MgFeSiO cathode (MgFeSiO-HTS) in seconds.

View Article and Find Full Text PDF

Maternal phthalates exposure promotes neural stem cell differentiation into phagocytic astrocytes and synapse engulfment via IRE1α/XBP1s pathway.

Cell Rep

January 2025

Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China. Electronic address:

Humans are widely exposed to phthalates, a common chemical plasticizer. Previous cohort studies have revealed that maternal exposure to monobutyl phthalate (MBP), a key metabolite of phthalates, is associated with neurodevelopmental defects. However, the molecular mechanism remains unclear.

View Article and Find Full Text PDF

Advances in nanozymes with peroxidase-like activity for biosensing and disease therapy applications.

J Mater Chem B

January 2025

Department of Laboratory Medicine/Clinical Laboratory Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

Natural enzymes are crucial in biological systems and widely used in biomedicine, but their disadvantages, such as insufficient stability and high cost, have limited their widespread application. Since discovering the enzyme-like activity of FeO nanoparticles, extensive research progress in diverse nanozymes has been made with their in-depth investigation, resulting in rapid development of related nanotechnologies. Nanozymes can compensate for the defects of natural enzymes and show higher stability with lower costs.

View Article and Find Full Text PDF

Competing Hexagonal and Square Lattices on a Spherical Surface.

Nano Lett

January 2025

School of Physics and Key Laboratory of Functional Polymer Materials of Ministry of Education, Nankai University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300071, China.

The structural properties of packed soft-core particles provide a platform to understand the cross-pollinated physical concepts in solid-state and soft-matter physics. Confined on a spherical surface, the traditional differential geometry also dictates the overall defect properties in otherwise regular crystal lattices. Using molecular dynamics simulation of the Hertzian model as a tool, we report here the emergence of new types of disclination patterns: domain and counter-domain defects, when hexagonal and square patterns coexist.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!