The detection and sensing of chirality using chiral biomaterials are growing areas of research in advanced bioelectronics. As a result, chiral-controlled biomaterials are crucial for advancing current technologies in chiral sensing applications within biosystems. A chiral carbon dot (C-dot) modulated self-assembled emissive cellulose nanocrystal (CNC) film is developed where the chirality of the CNC film can be tempered between left-handed and right-handed chirality after being doped with chiral L/D-C-dots in CNCs (C-dot-CNC film), transferring the chirality from C-dots to CNCs. The interaction between C-dots, CNCs, and carrier dynamics is investigated using a variety of steady-state and time-resolved PL spectroscopy techniques. The chiral C-dot enhanced the protonic conductivity across the CNC via the formation of hydrogen bonds with its surface functional groups and water molecules. Further, the chiral CNC-C-dots photoelectrodes demonstrate an excellent ability to distinguish between left-handed and right-handed small molecules. These findings on the underlying mechanism of spin selectivity between chiral CNC-C-dot and chiral ligand hold promise for the development of efficient chiral-sensing electronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.4c02564 | DOI Listing |
Acta Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China. Electronic address:
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors, but clinical drug treatments are limited. The natural product diphyllin was identified as a lead compound suppressing the proliferation of HNSCC cells through phenotypic screening of natural product library. However, further developments of diphyllin as an anti-HNSCC agent were restricted by the weak bioactivity and poor metabolic stability.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electrical and Computer Engineering, University of Delaware, Newark, Delaware, 19716, USA.
Exceptional points (EPs) have been extensively explored in mechanical, acoustic, plasmonic, and photonic systems. However, little is known about the role of EPs in tailoring the dynamic tunability of optical devices. A specific type of EPs known as chiral EPs has recently attracted much attention for controlling the flow of light and for building sensors with better responsivity.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, China.
Treatment of multisubstituted NH-enesulfinamides with tosyl isocyanate (TsNCO) at room temperature results in the formation of α-tosylcarbamoyloxy -sulfenyl ketimines with high enantioselectivity. This process is believed to proceed via a vinylogous aza-Pummerer-type reaction pathway in which the sulfinyl oxygen atom in the enesulfinamides undergoes nucleophilic attack on tosyl isocyanate, triggering the subsequent transformations that enable the transfer of chirality from sulfur to carbon.
View Article and Find Full Text PDFScience
January 2025
Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Axions, hypothetical elementary particles that remain undetectable in nature, can arise as quasiparticles in three-dimensional crystals known as axion insulators. Previous implementations of axion insulators have largely been limited to two-dimensional systems, leaving their topological properties in three dimensions unexplored in experiment. Here, we realize an axion insulator in a three-dimensional photonic crystal and probe its topological properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!