Aging is an intricate and gradual process characterized by tissue and cellular dysfunction. Adipose-derived mesenchymal stem cells (ADMSCs) experience a functional decline as part of systemic aging. However, the alterations in ADMSCs across various anatomical sites throughout an individual's lifespan remain unclear. To shed light on these changes, we collected white adipose tissue and brown adipose tissue samples from the epididymis, perirenal, inguinal, and scapular regions of young, adult, and aged rats and subsequently isolated ADMSCs for RNA sequencing. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Marker genes of ADMSCs from different sites were identified. Aging triggered notable activation of inflammatory and immune responses while diminishing the ADMSC differentiation capacity and ability to maintain a normal tissue morphology. Furthermore, miR-195-5p and miR-497-3p, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation, were positively correlated with aging. These findings increase our understanding of ADMSC senescence and underscore the unique physiological changes and functions of ADMSCs across different anatomical sites during aging. Dynamic changes in mRNAs and miRNAs of ADMSCs during aging are shown. As aging progressed, we observed a reduction in the number of ADMSCs at all anatomical sites. Aging leads to the activation of inflammatory and cellular dysfunction. miR-195-5p and miR-497-3p are positively correlated with aging, which promoted cell senescence and apoptosis while inhibiting proliferation and differentiation. ADMSCs associated with different anatomical sites have site-specific markers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpcell.00044.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!