The electrocatalytic synthesis of ammonia (NH) through the nitrogen reduction reaction (NRR) under ambient temperature and pressure is emerging as an alternative approach to the conventional Haber-Bosch process. However, it remains a significant challenge due to poor kinetics, low nitrogen (N) solubility in aqueous electrolytes, and the competing hydrogen evolution reaction (HER), which can significantly impact NH production rates and Faradaic efficiency (FE). Herein, a rationally designed boron-doped molybdenum sulfide (B-Mo-MoS) electrocatalyst is reported that effectively enhances N reduction to NH with an onset potential of -0.15 V versus RHE, achieving a FE of 78% and an NH yield of 5.83 µg h⁻¹ cm⁻ in a 0.05 m HSO(aq). Theoretical studies suggest that the effectiveness of NRR originates from electron density redistribution due to boron (B) doping, which provides an ideal pathway for nitrogenous species to bind with electron-deficient B sites. This work demonstrates a significant exploration, showing that Mo-based electrocatalysts are capable of facilitating artificial N fixation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202405578 | DOI Listing |
Small
December 2024
Centre for Nanoscience and Engineering, Indian Institute of Science, Bengaluru, 560012, India.
The design of mixed-dimensional heterostructures has emerged to be a new frontier of research as it induces exciting physical/chemical properties that extend beyond the fundamental properties of single dimensional systems. Therefore, rational design of heterostructured materials with novel surface chemistry and tailored interfacial properties appears to be very promising for the devices such as the gas sensors. Here, a highly sensitive gas sensor device is constructed by employing heterostructures of boron doped molybdenum disulfide quantum dots (B-MoS Qdots) assembled into the matrix of TiCT MXene.
View Article and Find Full Text PDFMikrochim Acta
December 2024
State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
An electrochemiluminescence (ECL) immunosensor was developed for the highly sensitive and specific detection of heart-type fatty acid binding protein (H-FABP) and the rapid diagnosis of acute myocardial infarction (AMI). H-FABP is a biomarker that is highly specific to cardiac tissue and is associated with a range of cardiac diseases. Following myocardial injury, the rate of increase in H-FABP levels is greater than that observed for myoglobin and troponin.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Hubei Key Laboratory of Advanced Textile Materials & Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials & Application, Key Laboratory of Textile Fiber & Product, Ministry of Education, Wuhan Textile University, Wuhan 430200, China; School of Materials Science & Engineering, Hubei University of Automotive Technology, Shiyan 442002, China. Electronic address:
Designing an ideal catalyst with antifouling performance and enhanced conversion efficiency can prevent microbial or dye contamination and protect the active phase of the catalysts at the triple-phase interface during disinfection processes. Herein, we developed an Lous-leaf-inspired nanometal anchored redox-active Janus nanoarchitecture with dynamic wetting abilities and synergistic catalytic/antibacterial performances. Specifically, the redox-active hydrophilic polydopamine (PDA) was used to mediate the localized self-assembly and nucleation of Ag on a cotton fabric without using other reductants.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Collaborative Innovation Center of Sustainable Energy Materials, School of Physical Science and Technology, Guangxi University; Guangxi Key Laboratory of Electrochemical Energy Materials, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, China. Electronic address:
Proton exchange membrane fuel cell (PEMFC) with ultra-low Pt loading is highly desirable but confronts challenges of deficient activity and durability for practical application. Herein, we report a newly integrated catalyst layer based on 3D porous B-doped graphene (3D-PBG) with the atomic layer deposition of Pt (Pt/3D-PBG) for PEMFC, in which highly graphitized 3D-PBG not only provides a robust framework to support Pt but also B dopants further enhances the deposition of Pt and their electronic interaction, resulting in high-performance PEMFC at ultra-low Pt loading. The cell with Pt/3D-PBG at 80.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK; Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden; University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany. Electronic address:
Hypothesis: Ellipsoidal particles confined at liquid interfaces exhibit complex self-assembly due to quadrupolar capillary interactions, favouring either tip-to-tip or side-to-side configurations. However, predicting and controlling which structure forms remains challenging. We hypothesize that introducing a polymer-based soft shell around the particles will modulate these capillary interactions, providing a means to tune the preferred self-assembly configuration based on particle geometry and shell properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!