We have studied the coalescence of oil in water emulsions under the influence of gravity. The emulsions were made with alkane oils and surfactants with varying physical chemistry. We chose cationic alkyl trimethylammonium bromides of different chain lengths and nonionic surfactants of ethylene oxide and sugar head groups, including polymeric surfactants. We observed phase separation in two steps. Creaming of the oil drops is followed by their rapid coalescence, increasing the average drop size and resulting in complete surfactant surface coverage of the interfaces. Full phase separation occurs after much longer times when the emulsion drops coalesce dramatically. We have used a model by Dinh et al. to relate to the coalescence frequency and hence to the activation energy for the rupture of the films between two neighboring drops. Our results support the view that the coalescence of stable emulsions (stable at least for a few hours) is a thermally activated process and is controlled by the surface compression elastic modulus. This modulus was determined using surface tension measurements and calculations using the Gibbs adsorption equation. The observed differences between ionic and nonionic systems are attributed to a two-step film rupture process in the case of ionic surfactants, which is not found in nonionic systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.4c02573 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!