Reverse genetics systems for rotaviruses (RV) facilitate the generation of genetically engineered RVs by transfection of 11 plasmids encoding 11 genomic viral RNA segments. In addition to viral genome expression, overexpression of NSP2 and NSP5 has been used to increase the rescue efficiency of recombinant RVs. Here, we showed that the overexpression of nucleotide sequence-modified NSP2 and NSP5 enabled the rapid and efficient production of recombinant RVs. Using improved reverse genetics, we established a reverse genetics system for human and bovine RV clinical isolates, as well as laboratory strains of bovine RV (NCDV and UK) and porcine RV (Gottfried). In addition, we rescued low-replicating recombinant RVs carrying a mutant NSP4 lacking the double-layered particle-binding domain, which was deficient in the efficient production of mature virions. These advancements in reverse genetics enabled the generation of molecular clones of RV clinical isolates and recombinant RVs harboring critical amino acid mutations, offering a versatile platform for investigating RV biology and pathogenesis.IMPORTANCERecombinant rotavirus (RV) synthesis via reverse genetics relies on both the viral propagation capacity and the efficiency of the experimental system. Since the establishment of our reverse genetics system, several enhancements have been implemented to augment the rescue efficiency. Nevertheless, challenges persist in generating RV clinical strains and recombinant viruses with low replication capacities. Notably, this improved reverse genetics system successfully facilitated the establishment of molecular clones of human and bovine RV clinical isolates. Fecal samples from patients with RV typically harbor quasi-species or, occasionally, multiple genotypes of RV. In the present study, we performed the genetic sequencing of clinical viral strains during the early propagation stages in cultured cells. Subsequently, infectious viruses were synthesized, allowing the characterization of circulating viruses in nature. This approach provides valuable insights into the genetic diversity and dynamics of RV populations and contributes to a more comprehensive understanding of viral pathogenesis and evolution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11650980 | PMC |
http://dx.doi.org/10.1128/jvi.00996-24 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
The harlequin ladybird, , is a predatory beetle used globally to control pests such as aphids and scale insects. Originating from East Asia, this species has become highly invasive since its introduction in the late 19th century to Europe and North America, posing a threat to local biodiversity. Intraguild predation is hypothesized to drive the success of this invasive species, but the underlying mechanisms remain unknown.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Urology, Mindong Hospital Affiliated to Fujian Medical University, Fuan, Fujian, China.
Previous studies have suggested an association between autoimmune diseases (AIDs) and the risk of prostate cancer (PCa). However, the causal relationship between AID and PCa remained unclear. The purpose of this study was to investigate the causal association between 3 common AIDs, including rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and ankylosing spondylitis (AS), and the risk of PCa.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Univ of Georgia, Plant Pathology, 3303 Miller Plant Sciences, Athens, United States, 30602;
Slippery skin of onion caused by pv. (Bga) is a common bacterial disease reported from onion growing regions around the world. Despite the increasing attention in recent years, our understanding of the virulence mechanisms of this pathogen remains limited.
View Article and Find Full Text PDFJ Gen Virol
January 2025
National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), NHC Key Laboratory for Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Beijing 100052, PR China.
Species A rotaviruses (RVs), which belong to the family and contain a genome of 11 segmented dsRNA segments, are a leading cause of severe acute gastroenteritis in infants and children younger than 5 years of age. We previously developed a strategy to recover rotavirus vaccine strain LLR from 11 cloned plasmids. Here, we report an improved reverse genetics system for LLR by combining two or three transcriptional cassettes in a single plasmid, which substantially enhances rescue efficiency from 66.
View Article and Find Full Text PDFOncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!