A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of electrolyte on the structure and orientation of water at air/water-polyethylene glycol polymer interface. | LitMetric

Impact of electrolyte on the structure and orientation of water at air/water-polyethylene glycol polymer interface.

J Chem Phys

Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Homi Bhabha National Institute, Trombay, Mumbai 400085, India.

Published: November 2024

Polyethylene glycol (PEG) is a water soluble, non-ionic polymer with applications in drug delivery, protein precipitation, anti-biofouling, water-splitting, Li-ion batteries, and fuel cells. The interaction of PEG with water and electrolytes plays pivotal roles in such applications. Using interface-selective spectroscopy, heterodyne-detected vibrational sum frequency generation, and Raman difference spectroscopy with simultaneous curve fitting analysis, we show that water adopts different structures and orientations at the air/water-PEG interface, which depends on the molar mass of the PEG. At the air/water-PEG4000 (MW 4000u) interface, water is H-up oriented (i.e., water Hs are pointed away from the aqueous bulk) around 3200 cm-1 and H-down oriented (i.e., water Hs are pointed toward the aqueous bulk) around 3470 cm-1. Variation of the bulk concentration of PEG4000 does not change the dual orientation of interfacial water. The presence of an electrolyte (1.0M NaCl) selectively reduces the H-up oriented water without affecting the H-down oriented water at the air/water-PEG4000 interface. The selective reorganization of the interfacial water is assigned to the disruption of the asymmetric hydration around ether-oxygen of the surface-adsorbed PEG4000 by the Na+ ion of the electrolyte. Interestingly, in the case of low molar mass PEG (air/water-PEG200), the interfacial water neither shows the dual orientation nor is affected by 1.0M NaCl.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0231332DOI Listing

Publication Analysis

Top Keywords

oriented water
16
water
12
interfacial water
12
peg water
8
molar mass
8
mass peg
8
h-up oriented
8
water pointed
8
pointed aqueous
8
aqueous bulk
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!