Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We develop a framework describing the dynamics and thermodynamics of open non-ideal reaction-diffusion systems, which embodies Flory-Huggins theories of mixtures and chemical reaction network theories. Our theory elucidates the mechanisms underpinning the emergence of self-organized dissipative structures in these systems. It evaluates the dissipation needed to sustain and control them, discriminating the contributions from each reaction and diffusion process with spatial resolution. It also reveals the role of the reaction network in powering and shaping these structures. We identify particular classes of networks in which diffusion processes always equilibrate within the structures, while dissipation occurs solely due to chemical reactions. The spatial configurations resulting from these processes can be derived by minimizing a kinetic potential, contrasting with the minimization of the thermodynamic free energy in passive systems. This framework opens the way to investigating the energetic cost of phenomena, such as liquid-liquid phase separation, coacervation, and the formation of biomolecular condensates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0231520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!