A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Spider-silk inspired ultrafast alkali-induced molecular aggregation for 3D printing arbitrary tubular hydrogels. | LitMetric

Fabricating tubular hydrogel models with arbitrary structural complexity and controllable diameters using an ultrafast, facile yet universal method is desirable for vascular prototypes yet still a great challenge. Herein, inspired by the denaturing ability of spider silks, a novel strategy to induce complexation applying highly concentrated alkali into a polyvinyl alcohol/ionic liquid (PVA/IL) solution, , alkali-induced molecular aggregation (AMA), is proposed to achieve such purpose. This strategy enables the rapid and facile fabrication of tubular hydrogel architectures with tunable diameters, controllable thicknesses, and excellent mechanical performance with a tensile strength of up to 1.1 MPa and stretchability exceeding 600%. Importantly, this novel strategy combined with 3D printing facilitates the rapid fabrication of a variety of precise tubular hydrogel models with connected cavity structures which are difficult to achieve using current methods. This ultrafast solidification strategy could also be extended to various alkalis, cations and anions to build different hydrogels, showcasing its versatility and universality. Hence, this strategy can be pioneering to rapidly fabricate complex three-dimensional and hollow enclosed hydrogel models for simulating endovascular interventional therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01291gDOI Listing

Publication Analysis

Top Keywords

tubular hydrogel
12
hydrogel models
12
alkali-induced molecular
8
molecular aggregation
8
novel strategy
8
strategy
5
spider-silk inspired
4
inspired ultrafast
4
ultrafast alkali-induced
4
aggregation printing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!