With the rapid advancement of electronic integration technology, the requirements for the working environment and stability of the heat dissipation equipment have become increasingly stringent. Consequently, studying a high-efficiency gas-liquid two-phase heat transfer surface holds significant importance. Aiming at the limited liquid transport performance caused by the temperature gradient in the heat transfer process, this paper combines the wetting gradient with the shape gradient and proposes a gradient-wettable multiwedge patterned surface, where droplets can be transported over long distances and at high velocities. In this paper, the effect of the average wetting gradient on droplet transport performance is investigated by designing a multiwedge hydrophilic pattern and adjusting the wetting properties of the hydrophobic region. The study focuses on the temperature gradient resistance of gradient-wettable, multiwedge patterned surfaces, providing a mechanistic explanation of the surface's ability to resist temperature gradients through theoretical analysis. It is shown that the gradient wettability multiwedge patterned surface has better resistance to the temperature gradient that hinders the droplet movement, and the droplets can still achieve transport of ∼38 mm at an average speed of ∼158 mm/s under the temperature gradient of 0.59 °C/mm. The research in this paper provides some insights into the application of temperature gradient resistance on heat transfer surfaces and contributes to heat dissipation methods for electronic integrated environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13342 | DOI Listing |
Small
January 2025
School of Mechanical Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, Seoul, 02841, Republic of Korea.
Passive temperature controls like passive daytime radiative cooling (PDRC)-heating (PDRH), and thermal insulation are essential to meet the growing demand for energy-efficient thermal solutions. When combined with advanced functions like electromagnetic interference shielding, these technologies can significantly enhance scalability. However, existing approaches using single thin films or uniform porous materials face inherent limitations in optimizing versatile functions, while lightweight, insulating aerogels can extend their multifunctionality by manipulating pores and fillers.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario, Canada.
Purpose: Brain temperature is tightly regulated and reflects a balance between cerebral metabolic heat production and heat transfer between the brain, blood, and external environment. Blood temperature and flow are critical to the regulation of brain temperature. Current methods for measuring in vivo brain and blood temperature are invasive and impractical for use in small animals.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science, Case Western Reserve University, Cleveland, 44106, USA.
Understanding subsurface temperature variations is crucial for assessing material degradation in underground structures. This study maps subsurface temperatures across the contiguous United States for depths from 50 to 3500 m, comparing linear interpolation, gradient boosting (LightGBM), neural networks, and a novel hybrid approach combining linear interpolation with LightGBM. Results reveal heterogeneous temperature patterns both horizontally and vertically.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Background: Biomass allocation reflects functional tradeoffs among plant organs and thus represents life history strategies. However, little is known about the patterns and drivers of biomass allocation between reproductive and vegetative organs along large environmental gradients. Here, we examined how environmental gradients affect biomass and the allocation between reproductive and vegetative organs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biology, Stanford University, Stanford, CA 94305.
Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation in , a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!