Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Self-pillared pentasil (SPP) zeolites have received considerable interest due to their distinctive intergrowth structure, while the precise process and mechanism for the formation of SPP zeolites remain obscure. Herein, SPP zeolites (ZSM-5) have been successfully synthesized by pre-aging an Al-rich gel without employing any organic templates or seeds for the first time. The as-synthesized SPP zeolites possess a notably high external surface area while the micropores for Ar adsorption are partially blocked by excess Na, which can be fully recovered by Mg or H exchange. The crystallization process is monitored and the impacts of synthesis parameters are investigated. The results show that self-pillaring originates from the partial lattice distortion at the intersections of nanosheets, offering a new insight into the self-pillaring process. Typically, with decreasing SiO/AlO ratio, more crossovers could be observed in the crystals, hinting that self-pillaring predominately occurs at the (101) plane of twins in the ZSM-5 precursor due to Al-rich lattice distortion. Finally, in the catalytic cracking of -heptane, H-SPP zeolites exhibit superior performance to commercial H-ZSM-5 zeolites due to their abundant Brønsted acid sites arising from a low framework SiO/AlO ratio of ∼21 and the short diffusion path originating from the house-of-cards structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr03824j | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!