A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

D5 digital circular workflow: five digital steps towards matchmaking for material reuse in construction. | LitMetric

D5 digital circular workflow: five digital steps towards matchmaking for material reuse in construction.

Npj Mater Sustain

Circular Engineering for Architecture, Department of Civil, Environmental and Geomatic Engineering, ETH Zurich, Zurich, Switzerland.

Published: November 2024

The intersection of digital transformation and circular construction practices presents significant potential to mitigate environmental impacts through optimised material reuse. We propose a five-step (D5) digital circular workflow that integrates these digital innovations towards reuse, validated through real-world case studies. We assessed a variety of digital tools for enhancing the reuse of construction materials, including digital product passports, material classification assisted by artificial intelligence (AI), reality capture, computational design, design inspired by generative AI, digital fabrication techniques, extended reality, and blockchain technology. Using action research through a multiple case study approach, we disassembled several buildings that were set for demolition and subsequently designed and executed construction projects using the salvaged materials. Our findings indicate that digital transformation for detection, disassembly, distribution, design, and finally deployment significantly support the application of circular economy principles. We demonstrate the potential of the proposed workflow for industry implementation and scalability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530372PMC
http://dx.doi.org/10.1038/s44296-024-00034-8DOI Listing

Publication Analysis

Top Keywords

digital
9
digital circular
8
circular workflow
8
material reuse
8
reuse construction
8
digital transformation
8
workflow digital
4
digital steps
4
steps matchmaking
4
matchmaking material
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!