A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced MRI-based brain tumour classification with a novel Pix2pix generative adversarial network augmentation framework. | LitMetric

The scarcity of medical imaging datasets and privacy concerns pose significant challenges in artificial intelligence-based disease prediction. This poses major concerns to patient confidentiality as there are now tools capable of extracting patient information by merely analysing patient's imaging data. To address this, we propose the use of synthetic data generated by generative adversarial networks as a solution. Our study pioneers the utilisation of a novel Pix2Pix generative adversarial network model, specifically the 'image-to-image translation with conditional adversarial networks,' to generate synthetic datasets for brain tumour classification. We focus on classifying four tumour types: glioma, meningioma, pituitary and healthy. We introduce a novel conditional deep convolutional neural network architecture, developed from convolutional neural network architectures, to process the pre-processed generated synthetic datasets and the original datasets obtained from the Kaggle repository. Our evaluation metrics demonstrate the conditional deep convolutional neural network model's high performance with synthetic images, achieving an accuracy of 86%. Comparative analysis with state-of-the-art models such as Residual Network50, Visual Geometry Group 16, Visual Geometry Group 19 and InceptionV3 highlights the superior performance of our conditional deep convolutional neural network model in brain tumour detection, diagnosis and classification. Our findings underscore the efficacy of our novel Pix2Pix generative adversarial network augmentation technique in creating synthetic datasets for accurate brain tumour classification, offering a promising avenue for improved disease prediction and treatment planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528519PMC
http://dx.doi.org/10.1093/braincomms/fcae372DOI Listing

Publication Analysis

Top Keywords

brain tumour
16
generative adversarial
16
convolutional neural
16
neural network
16
tumour classification
12
novel pix2pix
12
pix2pix generative
12
adversarial network
12
synthetic datasets
12
conditional deep
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!