AI Article Synopsis

  • * Researchers have developed a new method to create nanosponges from wool keratin using pyromellitic dianhydride as a cross-linker, forming a polymer suitable for various uses.
  • * The resulting keratin-based nanosponge effectively absorbs about 50% of heavy metals in just 24 hours, showing potential as a sustainable solution for wastewater treatment.

Article Abstract

Wool waste is a huge environmental problem that needs to be addressed in order to avoid the continuous accumulation of biohazardous waste in landfills. In recent years, wool has proven to be an excellent source of keratin that can be used for various purposes. But never before has keratin from wool waste been used as a building block to synthesize a well-known class of biopolymers called nanosponges. Typically, nanosponges are produced by the reaction of cyclodextrins with an appropriate cross-linker to obtain an insoluble hyper-cross-linked polymer, which has applications in various fields. For this reason, a novel, affordable approach for the synthesis of a novel class of nanosponge using wool keratin as the building block has been presented. The keratin nanosponge was synthesized by reacting keratin with pyromellitic dianhydride as a cross-linking agent. The formation of a cross-linked polymer was successfully confirmed by CHNS-elemental analysis, TGA, DSC, FTIR-ATR, SEM, and water absorption capacity measurements. Surprisingly, the keratin-based nanosponge showed ∼50% uptake of heavy metals after only 24 h of contact time. The adsorption kinetics was also evaluated, indicating a pseudo-second-order model fit and the mechanism is predominantly the intraparticle diffusion process. The novel synthesized nanosponge proved to be a possible alternative for wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525742PMC
http://dx.doi.org/10.1021/acsomega.3c09133DOI Listing

Publication Analysis

Top Keywords

wool waste
12
building block
12
nanosponge wool
8
waste building
8
keratin-based nanosponge
8
wastewater treatment
8
nanosponge
6
wool
5
keratin
5
novel
4

Similar Publications

The Use of Recycled Cement-Bonded Particle Board Waste in the Development of Lightweight Biocomposites.

Materials (Basel)

December 2024

Institute of Sustainable Building Materials and Engineering Systems, Faculty of Civil and Mechanical Engineering, Riga Technical University, Kipsalas Str. 6A, LV-1048 Riga, Latvia.

Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined.

View Article and Find Full Text PDF

Novel Hierarchical Disordered Li- and Al-KIL-2 Catalysts for the Pyrolysis of Biomass Model Compounds and Wool Waste: A Comparison with ZSM-5.

Molecules

December 2024

Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK.

In this study, we investigated the pyrolysis of cellulose, lignin, phenylalanine and textile wool waste using microscale thermogravimetric analysis (TGA) and a gram-scale fixed bed reactor. The pyrolysis was conducted at 500 °C and 1 bar N, using Al- and Li-doped mesoporous KIL-2 and ZSM-5 catalysts for comparison. Our results show that amorphous Al-KIL-2 catalyst was the most efficient in producing aromatics from cellulose and lignin.

View Article and Find Full Text PDF

In this study, the practical application of self-healing asphalt mixtures incorporating steel wool fibers and induction heating was investigated, expanding upon previous research that primarily assessed the self-healing properties rather than optimizing the heating process. Specifically, the aim was to enhance the induction heating methodology for a semi-dense asphalt concrete mixture (AC 16 Surf 35/50 S). In this research, the induction heating parameters were refined to improve the self-healing capabilities, focusing on the following three key aspects: (i) energy consumption, (ii) heating rate, and (iii) heating homogeneity.

View Article and Find Full Text PDF

Sorption behavior of artificial keratin fibers from feathers with anionically charged azo and anthraquinone dyes for potential industrial applications.

Int J Biol Macromol

January 2025

Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States. Electronic address:

Sorption thermodynamics and kinetics of 100 % artificial keratin fibers with acid dyes have been studied to understand the surface properties, dyeability, and suitability for industrial applications. For a sustainable textile fiber industry, affordable biobased fibers with good dyeability and performance properties are essential for commercial acceptance. Artificial keratin fibers developed from waste feathers have already demonstrated excellent strength and wet stability due to their high degree of disulfide crosslinkages and can be cost-effective as well.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers have developed a new method to create nanosponges from wool keratin using pyromellitic dianhydride as a cross-linker, forming a polymer suitable for various uses.
  • * The resulting keratin-based nanosponge effectively absorbs about 50% of heavy metals in just 24 hours, showing potential as a sustainable solution for wastewater treatment.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!