Wool waste is a huge environmental problem that needs to be addressed in order to avoid the continuous accumulation of biohazardous waste in landfills. In recent years, wool has proven to be an excellent source of keratin that can be used for various purposes. But never before has keratin from wool waste been used as a building block to synthesize a well-known class of biopolymers called nanosponges. Typically, nanosponges are produced by the reaction of cyclodextrins with an appropriate cross-linker to obtain an insoluble hyper-cross-linked polymer, which has applications in various fields. For this reason, a novel, affordable approach for the synthesis of a novel class of nanosponge using wool keratin as the building block has been presented. The keratin nanosponge was synthesized by reacting keratin with pyromellitic dianhydride as a cross-linking agent. The formation of a cross-linked polymer was successfully confirmed by CHNS-elemental analysis, TGA, DSC, FTIR-ATR, SEM, and water absorption capacity measurements. Surprisingly, the keratin-based nanosponge showed ∼50% uptake of heavy metals after only 24 h of contact time. The adsorption kinetics was also evaluated, indicating a pseudo-second-order model fit and the mechanism is predominantly the intraparticle diffusion process. The novel synthesized nanosponge proved to be a possible alternative for wastewater treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525742 | PMC |
http://dx.doi.org/10.1021/acsomega.3c09133 | DOI Listing |
Materials (Basel)
December 2024
Institute of Sustainable Building Materials and Engineering Systems, Faculty of Civil and Mechanical Engineering, Riga Technical University, Kipsalas Str. 6A, LV-1048 Riga, Latvia.
Cement-bonded particle boards are gaining popularity globally due to their durability, strength, and, more importantly, environmental sustainability. The increasing demand for these materials has also created the necessity for the sustainable recycling of these materials. In this study, the potential to recycle wood-wool cement board (WWCB) waste into new lightweight insulation biocomposite material was examined.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH12 7NT, UK.
In this study, we investigated the pyrolysis of cellulose, lignin, phenylalanine and textile wool waste using microscale thermogravimetric analysis (TGA) and a gram-scale fixed bed reactor. The pyrolysis was conducted at 500 °C and 1 bar N, using Al- and Li-doped mesoporous KIL-2 and ZSM-5 catalysts for comparison. Our results show that amorphous Al-KIL-2 catalyst was the most efficient in producing aromatics from cellulose and lignin.
View Article and Find Full Text PDFMaterials (Basel)
November 2024
Highway Engineering Research Group, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
In this study, the practical application of self-healing asphalt mixtures incorporating steel wool fibers and induction heating was investigated, expanding upon previous research that primarily assessed the self-healing properties rather than optimizing the heating process. Specifically, the aim was to enhance the induction heating methodology for a semi-dense asphalt concrete mixture (AC 16 Surf 35/50 S). In this research, the induction heating parameters were refined to improve the self-healing capabilities, focusing on the following three key aspects: (i) energy consumption, (ii) heating rate, and (iii) heating homogeneity.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Textiles, Merchandising and Fashion Design, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States; Department of Biological Systems Engineering, 234 GNHS Building, University of Nebraska-Lincoln, Lincoln, NE 68583-0802, United States. Electronic address:
Sorption thermodynamics and kinetics of 100 % artificial keratin fibers with acid dyes have been studied to understand the surface properties, dyeability, and suitability for industrial applications. For a sustainable textile fiber industry, affordable biobased fibers with good dyeability and performance properties are essential for commercial acceptance. Artificial keratin fibers developed from waste feathers have already demonstrated excellent strength and wet stability due to their high degree of disulfide crosslinkages and can be cost-effective as well.
View Article and Find Full Text PDFACS Omega
October 2024
CNR-STIIMA, Italian National Research Council, Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, Corso G. Pella 16, 13900, Biella (BI), Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!