This study aims to enhance the production efficiency of carbon microspheres (CS) and expand their potential applications. To this end, resorcinol-formaldehyde microspheres (RFS) were prepared in high yield through the modified Stöber method, utilizing resorcinol and formaldehyde as carbon sources, ammonia as a catalyst, and sodium dodecyl benzenesulfonate (SDBS) as a soft template. The resulting RFS were then carbonized to obtain high yield CS. This study examined the impact of key factors, namely, the concentration of resorcinol, ammonia, and the SDBS concentration, along with the temperature of carbonization, upon the properties of the resulting CS, which were observed with regard to microscopic morphology, average particle size, homogeneity, and yield. The findings demonstrated that the proclivity of RFS to agglomerate with one another at high carbon source concentrations was markedly diminished, while the yield of CS was notably enhanced through the introduction of the anionic surfactant SDBS. The particle size of RFS can be modified within the range 200-1000 nm by adjusting the resorcinol and ammonia concentration. The prepared RFS exhibited a regular spherical morphology and a smooth surface. Furthermore, the CS displayed a uniform spherical morphology following high-temperature carbonization, with no agglomeration or cross-linking observed between adjacent particles. It was observed that the yield of RFS reached a maximum of 93.2 g/L when the resorcinol concentration was 0.7 mol/L. Following carbonization at 800 °C, the yield of CS was found to be 41.9 g/L, with a diameter of 770 nm and good monodispersity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11525538 | PMC |
http://dx.doi.org/10.1021/acsomega.4c05590 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China.
Advancements in the development of fast-charging and long-lasting microstructured alloying anodes with high volumetric capacities are essential for enhancing the operational efficiency of sodium-ion batteries (SIBs). These anodes, however, face challenges such as declined cyclability and rate capability, primarily due to mechanical degradation reduced by significant volumetric changes (over 252%) and slow kinetics of sodium-ion storage. Herein, we introduce a novel anode design featuring densely packed bismuth (Bi) embedded within highly conductive carbon microspheres to overcome the aforementioned challenges.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Environmental and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China. Electronic address:
Carbon dots (CDs) mediated g-CN (CN) is a promising visible-light-driven semiconductor in catalyzing peroxymonosulfate (PMS) for aqueous contaminants remediation. However, the poor dispersibility of powered catalyst and its challenging recyclability impede their broader application. Herein, we embedded FeN bridge within the g-CN framework and immobilized g-CN gel beads (CA/FNCCN) through a 3D cross-linking process with sodium alginate.
View Article and Find Full Text PDFMolecules
December 2024
Shanxi Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China.
Lithium-sulfur (Li-S) batteries have emerged as a promising candidate for next-generation high-energy rechargeable lithium batteries, but their practical application is impeded by the sluggish redox kinetics and low sulfur loading. Here, we report the in situ growth of δ-MnO nanosheets onto hierarchical porous carbon microspheres (HPCs) to form an HPCs/S@MnO composite for advanced lithium-sulfur batteries. The delicately designed hybrid architecture can effectively confine LiPSs and obtain high sulfur loading up to 10 mg cm, in which the inner carbon microspheres with a large pore volume and large specific surface area can encapsulate high sulfur content, and the outer MnO nanosheets, as a catalytic layer, can improve the conversion reaction of LiPSs and suppress the shuttle effect.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Materials and Chemistry, China Jiliang University, 258 Xueyuan Street, Xiasha Higher Education Zone, Hangzhou 310018, China. Electronic address:
6PPD-quinone (6PPD-Q) as a derivative of the rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), is attracting intensive attention due to the significant hazard to ecosystems. However, the effective management of this type of contaminant has been scarcely reported. Hydrangea-like hollow O, Cl-codoped graphite-phase carbon nitride microspheres (HHCN), featuring open pores were readily prepared by molecular self-assembly and utilized to address 6PPD-Q in an aqueous system for the first time.
View Article and Find Full Text PDFSmall
January 2025
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
Nanozymes open up new avenues for amplifying signals in photoelectrochemical (PEC) biosensing, which are yet limited by the generated small-molecule signal reporters. Herein, a multifunctional nanoenzyme of Pt NPs/CoSAs@NC consisting of Co single atoms on N-doped porous carbon decorated with Pt nanoparticles is successfully synthesized for cascade catalytic polymerization of dopamine for constructing a highly sensitive photocurrent-polarity-switching PEC biosensing platform. Taking protein tyrosine phosphatase 1B (PTP1B) as a target model, Pt NPs/CoSAs@NC nanoenzymes are linked to magnetic microspheres via phosphorylated peptides.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!