The production of reactive oxygen species (ROS) is susceptible to external excitation or insufficient supply of related participants (, hydrogen peroxide (HO) and sensitizer), liming ROS-driven tumor treatment. Additionally, the lysosomal retention effect severely hinders the utilization of ROS-based nanosystems and severely restricted the therapeutic effect of tumors. Therefore, first reported herein an intelligent nanocatalyst, TCPP-Cu@MnO ((Mn)(Mn)(Mn)O), and proposed a programmed ROS amplification strategy to treat tumors. Initially, the acidity-unlocked nanocatalyst was voluntarily triggered to generate abundant singlet oxygen (O) to mediate acid lysosomal ablation to assist nanocatalyst escape and partially induce lysosomal death, a stage known as lysosome-driven therapy. More unexpectedly, the high-yielding production of O in acid condition (pH 5.0) was showed compared to neutral media (pH 7.4), with a difference of about 204 times between the two. Subsequently, the escaping nanocatalyst further activated HO-mediated O and hydroxyl radical (•OH) generation and glutathione (GSH) consumption for further accentuation tumor therapy efficiency, which is based on the Fenton-like reaction and Russell reaction mechanisms. Therefore, in this system, a program-activatable TCPP-Cu@MnO nanocatalyst, was proposed to efficiently destruct organelle-lysosome O inducing, and stimulated HO conversion into highly toxic O and •OH in cytoplasm, constituting an attractive method to overcome limitations of current ROS treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530759 | PMC |
http://dx.doi.org/10.1016/j.mtbio.2024.101299 | DOI Listing |
J Am Chem Soc
December 2024
College of Materials, Institute of Artificial Intelligence, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, iChEM, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China.
Nickel-iron-based catalysts are recognized for their high efficiency in the oxygen evolution reaction (OER) under alkaline conditions, yet the underlying mechanisms that drive their superior performance remain unclear. Herein, we revealed the molecular OER mechanism and the structure-intermediate-performance relationship of OER on a phosphorus-doped nickel-iron nanocatalyst (NiFeP). NiFeP exhibited exceptional activity and stability with an overpotential of only 210 mV at 10 mA cm in 1 M KOH and a cell voltage of 1.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
The complex composition of real plastic wastes poses a significant challenge for their large-scale disposal. A responsive on-site compositional analysis of plastics is informative in choosing downstream processing methods. Nanocatalyst-based assay kit is highly qualified for this scene; however, there remain no efficient nanocatalysts for plastics due to their highly inert chemistry.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui, 230026, China.
The transition metal nanocatalysts containing disordered active sites can potentially achieve efficient Sabatier reactions with high selectivity. However, it remains a challenge to maintain the stability of these active sites in such an exothermic reaction. Here, a thermal management approach is reported to address this challenge.
View Article and Find Full Text PDFMater Today Bio
December 2024
Department of Ultrasound, Zhongshan Hospital, Institute of Ultrasound in Medicine and Engineering, Fudan University, Shanghai, 200032, PR China.
The production of reactive oxygen species (ROS) is susceptible to external excitation or insufficient supply of related participants (, hydrogen peroxide (HO) and sensitizer), liming ROS-driven tumor treatment. Additionally, the lysosomal retention effect severely hinders the utilization of ROS-based nanosystems and severely restricted the therapeutic effect of tumors. Therefore, first reported herein an intelligent nanocatalyst, TCPP-Cu@MnO ((Mn)(Mn)(Mn)O), and proposed a programmed ROS amplification strategy to treat tumors.
View Article and Find Full Text PDFJ Mater Chem B
September 2024
School of Physics and Electronic Sciences, Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, People's Republic of China.
The ground-breaking combination of photodynamic therapy (PDT) and photothermal therapy (PTT) has attracted much attention in medical fields as an effective method for fighting cancer. However, evidence suggests that the therapy efficiency is still limited by shallow light penetration depth and poor photosensitizer loading capacity. Herein, we constructed an upconversion nanoparticle@Zr-based metal-organic framework@indocyanine green molecule (UCNPs@ZrMOF@ICG) nanocomposite to integrate 1532 nm light-triggered PDT and 808 nm light-mediated PTT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!