AI Article Synopsis

  • * The study utilized in-silico modeling, in-vitro assays to determine the effectiveness of six anti-virulence compounds, and in-vivo testing through larvicidal activity against HvKp.
  • * Results indicated that linoleic acid emerged as the most promising compound for anti-virulence therapy, showing some activity in vivo, while other compounds did not demonstrate inhibitory effects against the targeted hypervirulence genes.

Article Abstract

Introduction: The rise in antimicrobial resistance among bacterial pathogens is a global concern, and anti-virulence therapy may be an alternative strategy to address the issue. Multidrug resistant (MDR) hypervirulent (HvKp) is known to be associated with healthcare associated infections. These are often challenging to treat and here anti-virulence therapy may be a treatment option. The study of anti-virulence compounds against HvKp by in-silico prediction, in-vitro experiments and in-vivo assay enables to determine which anti-virulence compounds are suitable for an alternative approach MDR HvKp.

Methods: Modeling of the proteins, ligand binding and molecular docking were performed targeting different hypervirulence genes viz., , and, by in-silico analysis using different bioinformatics tool and software. Minimum inhibitory concentration (MIC) was determined for six anti-virulence compounds; curcumin, eugenol, reserpine, linoleic acid, ε-anethole, and α-thujone by standard protocol. Quantitative real-time PCR was performed selecting two isolates harboring and genes. larva killing assay was used for in-vivo experiment.

Results: In-silico analysis observed that linoleic acid could be the best fit in comparison with the other compounds. None of the anti-virulence compounds showed any inhibitory activity and upon transcriptional expression analysis of the hypervirulence genes; was marginally increased for both the isolates when linoleic acid exposure was given.

Conclusions: In-vivo study revealed that linoleic acid and reserpine showed anti-virulence activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11527491PMC
http://dx.doi.org/10.18683/germs.2024.1426DOI Listing

Publication Analysis

Top Keywords

linoleic acid
20
anti-virulence compounds
16
anti-virulence
8
anti-virulence therapy
8
hypervirulence genes
8
in-silico analysis
8
linoleic
5
compounds
5
acid acts
4
acts potential
4

Similar Publications

Polyunsaturated fatty acids (PUFAs) including omega-3 and omega-6 are obtained from diet and can be measured objectively in plasma or red blood cells (RBCs) membrane biomarkers, representing different dietary exposure windows. conversion of omega-3 and omega-6 PUFAs from short-to long-chain counterparts occurs via a shared metabolic pathway involving fatty acid desaturases and elongase. This analysis leveraged genome-wide association study (GWAS) summary statistics for RBC and plasma PUFAs, along with expression quantitative trait loci (eQTL) to estimate tissue-specific genetically predicted gene expression effects for delta-5 desaturase ( ), delta-6 desaturase ( ), and elongase ( ) on changes in RBC and plasma biomarkers.

View Article and Find Full Text PDF

Scorpion is a commonly used drug in traditional Chinese medicine for treating epilepsy, although the exact mechanisms are not yet fully understood. This study aimed to compare the treatment effects of Scorpion water extract (SWE) and Scorpion ethanol extract (SEE) on mice with pentetrazole-induced epilepsy and investigate the possible mechanisms through metabolomics methods. A pentetrazole-induced epileptic mice model was used to assess the corrective effects of SWE and SEE.

View Article and Find Full Text PDF

This study explores the synergistic effects of linoleic acid (LA) oxidation on the aggregation behavior and structural properties of wheat gluten (WG). Using lipoxygenase to induce LA oxidation, it was observed that this process significantly influenced WG's viscoelasticity and structural characteristics. Specifically, LA oxidation enhanced WG's viscoelastic properties while reducing its instantaneous elastic and recovery deformations.

View Article and Find Full Text PDF

Loss of Myostatin leads to low production of CH by altering rumen microbiota and metabolome in cattle.

Int J Biol Macromol

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Science, Inner Mongolia University, Hohhot 010000, China. Electronic address:

Myostatin (MSTN) is a protein that plays a crucial role in regulating skeletal muscle development. Despite the known benefits of MSTN mutant cattle for increasing beef production, their potential impact on CH emissions has not been quantified. The study comparing wild-type (WT) cattle to MSTN-knockout (MSTN-KO) cattle revealed that CH production was lower.

View Article and Find Full Text PDF

Stress signaling, response, and adaptive mechanisms in submerged macrophytes under PFASs and warming exposure.

Environ Pollut

January 2025

State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Heat stress disturbs cellular homeostasis and alters the fitness of individual organisms. However, it is unclear whether thermal perturbations exacerbate the toxic effects of per- and polyfluorinated alkyl substances (PFASs) on trophic endpoints in freshwater ecosystems. We conducted a mesocosm experiment to investigate the impact of warming and PFASs on the widespread submerged macrophytes (Hydrilla verticillata) at a molecular level.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!