Animal-mediated pollination is a key ecosystem service required to some extent by almost three-quarters of the leading human food crops in global food production. Anthropogenic pressures such as habitat loss and land-use intensification are causing shifts in ecological community composition, potentially resulting in declines in pollination services and impacting crop production. Previous research has often overlooked interspecific differences in pollination contribution, yet such differences mean that biodiversity declines will not necessarily negatively impact pollination. Here, we use a novel species-level ecosystem service contribution matrix along with mixed-effects models to explore how groups of terrestrial species who contribute differently to crop pollination respond globally to land-use type, land-use intensity, and availability of natural habitats in the surrounding landscape. We find that the species whose contribution to crop pollination is higher generally respond less negatively (and in some cases positively) to human disturbance of land, compared to species that contribute less or not at all to pollination. This result may be due to these high-contribution species being less sensitive to anthropogenic land conversions, which has led humans to being more reliant on them for crop pollination. However, it also suggests that there is potential for crop pollination to be resilient in the face of anthropogenic land conversions. With such a high proportion of food crops requiring animal-mediated pollination to some extent, understanding how anthropogenic landscapes impact ecological communities and the consequences for pollination is critical for ensuring food security.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522614PMC
http://dx.doi.org/10.1002/ece3.70486DOI Listing

Publication Analysis

Top Keywords

crop pollination
16
anthropogenic land
12
pollination
11
respond negatively
8
animal-mediated pollination
8
ecosystem service
8
food crops
8
species contribute
8
land conversions
8
crop
6

Similar Publications

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

As a result of climate change, temperate regions are facing the simultaneous increase in water and heat stress. These changes may affect the interactions between plants and pollinators, which will have an impact on entomophilous crop yields. Here, we investigated the consequences of high temperatures and water stress on plant growth, floral biology, flower-reward production, and insect visitation of five varieties of common buckwheat (), an entomophilous crop of growing interest for sustainable agriculture.

View Article and Find Full Text PDF

Foraging abilities and competitive interactions between two egg parasitoids of bagrada bug in California.

Bull Entomol Res

January 2025

Invasive Species and Pollinator Health Research Unit, USDA-ARS, Albany, CA, USA.

Bagrada bug, (Burmeister) (Hemiptera: Pentatomidae), is an invasive pest of cole crops in the United States. Because it also feeds on widespread weeds and persists in natural habitats surrounding crop fields, conventional control strategies are often ineffective at providing long-term control. One egg parasitoid, Talamas (Hymenoptera: Scelionidae), is a promising biological control candidate because of its ability to parasitise buried eggs.

View Article and Find Full Text PDF

The honey bee () is the most widely managed pollinator and is vital for crop fertilization. Recently, bee colonies have been suffering high mortality rates, exacerbated by factors such as land-use changes and the use of pesticides. Our work aimed to explore the residues of pesticides in honey-bee-collected pollen and how this contamination was affected by seasonality and the landscape composition.

View Article and Find Full Text PDF

Conservation of bumblebee populations is essential because of their role as pollinators. Declines in bumblebee abundance have been documented in recent decades, mostly attributed to agricultural intensification, landscape simplification and loss of semi-natural grasslands. In this study, we investigated the effects of landscape composition on bumblebee abundance at different spatial scales in 476 semi-natural grassland sites in southern Sweden.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!