Fluorescent glucose sensors often utilize nanotechnology to detect glucose in a sensitive and targeted manner. Nanoscale materials increase the sensitivity and efficiency of sensors by better understanding and managing the properties and interactions of the structure to be sensed. Nitrogen-doped carbon quantum dots (N-CQD), which work with the concept of fluorescence quenching or switching on because of specific processes in the presence of glucose, are one type of nanoscale material added to these sensors. In the field of biological material identification, this state-of-the-art technology is recognized as a useful tool. In this work, copper nanostructure-supported nitrogen-doped carbon quantum dots (Cu@N-CQDs) were synthesized by the hydrothermal method. The shape and structure of the fabricated materials were characterized using fluorescence (FL) spectrophotometry, Fourier Transform Infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), X-ray diffraction, and UV-visible spectrophotometry (UV-vis). The proposed sensor has a linear range of 0-140 μM and a limit of detection (LOD) of 29.85 μM, showing high sensitivity and selectivity for glucose sensing by FL. The developed sensor was successfully applied to detect glucose and demonstrated the potential of Cu@N-CQDs as promising candidates for designing sensors for glucose measurement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528916PMC
http://dx.doi.org/10.1039/d4ra06566bDOI Listing

Publication Analysis

Top Keywords

nitrogen-doped carbon
12
carbon quantum
12
quantum dots
12
copper nanostructure-supported
8
nanostructure-supported nitrogen-doped
8
detect glucose
8
glucose
7
performance sensitive
4
sensitive glucose
4
glucose sensor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!