A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Metformin as a Potential Therapeutic Agent in Breast Cancer: Targeting miR-125a Methylation and Epigenetic Regulation. | LitMetric

Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3). SK-BR3 cells were cultured and treated with various concentrations of metformin to assess its effects on cell viability, DNA methylation, HER2, and DNA Methyltransferase 1 (DNMT1) expression. Molecular analyses focus on the miR-125a signaling pathway modulation, DNA methylation, mRNA expression of DNMT1, and protein level of HER2. Research showed a dose-dependent reduction in cell viability, with IC50 values from 65 mM at 48 hours to 35 mM at 72 hours. Metformin treatment led to demethylation of the miR-125a promoter, which increased miR-125a expression and subsequently reduced HER2 levels. This suggests that metformin exerts its anticancer effects partly by regulation of the miR-125a-HER2 axis. Additionally, metformin inhibited vimentin expression, indicating its potential to interfere with epithelial-mesenchymal transition (EMT) processes. Metformin may serve as a targeted therapeutic agent in HER2-positive breast cancer by modulating the miR-125a-HER2 axis and influencing on the epigenetic and EMT regulation. Further research is warranted to elucidate the therapeutic potential of metformin through these mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530948PMC
http://dx.doi.org/10.22088/IJMCM.BUMS.13.3.272DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
metformin
9
therapeutic agent
8
mir-125a promoter
8
signaling pathway
8
her2-positive breast
8
cell viability
8
dna methylation
8
mir-125a-her2 axis
8
cancer
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!