Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer, characterized by genetic diversity and molecular subtypes, presents significant treatment challenges, especially in human epidermal growth factor receptor type 2 (HER2)-positive cases, which are associated with poor prognosis. Metformin, widely known for its antidiabetic effects, has emerged as a promising candidate for cancer therapy. This study investigates the effect of metformin on miR-125a promoter methylation and its subsequent impact on the HER2 signaling pathway in HER2-positive breast cancer cells (SK-BR3). SK-BR3 cells were cultured and treated with various concentrations of metformin to assess its effects on cell viability, DNA methylation, HER2, and DNA Methyltransferase 1 (DNMT1) expression. Molecular analyses focus on the miR-125a signaling pathway modulation, DNA methylation, mRNA expression of DNMT1, and protein level of HER2. Research showed a dose-dependent reduction in cell viability, with IC50 values from 65 mM at 48 hours to 35 mM at 72 hours. Metformin treatment led to demethylation of the miR-125a promoter, which increased miR-125a expression and subsequently reduced HER2 levels. This suggests that metformin exerts its anticancer effects partly by regulation of the miR-125a-HER2 axis. Additionally, metformin inhibited vimentin expression, indicating its potential to interfere with epithelial-mesenchymal transition (EMT) processes. Metformin may serve as a targeted therapeutic agent in HER2-positive breast cancer by modulating the miR-125a-HER2 axis and influencing on the epigenetic and EMT regulation. Further research is warranted to elucidate the therapeutic potential of metformin through these mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530948 | PMC |
http://dx.doi.org/10.22088/IJMCM.BUMS.13.3.272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!