Transforming growth factor beta (TGF-β) initiates epithelial-mesenchymal transition (EMT) in tubular and glomerular epithelial cells, resulting in excessive production and deposition of extracellular matrix through its interaction with TGF-β receptors, which play a crucial role in TGF-β signaling involving two receptor types, namely TGF-β type I (TβRI) and type II (TβRII). EMT contributes to the pathogenesis of interstitial renal fibrosis, a marker of end-stage kidney disease. This study aimed to identify the bioactive compounds in the active fraction of and evaluate their ability to inhibit the TGF-β activity and their potential as drug candidates. The active components in the active fraction of were analyzed using gas chromatography-mass spectrometry (GC-MS). The bioactive compound structures were obtained from the PubChem database, while the protein targets, TβRI and TβRII, were retrieved from the Protein Data Bank (PDB). The molecular docking analyses were performed using PyRx 0.8 and Discovery Studio. SwissADME was used to evaluate ligand properties and druglikeness. Three dominant active compounds were identified, namely palmitic acid, campesterol, and stigmasterol. studies demonstrated strong energy bonds existed between TβRI and palmitic acid, campesterol, stigmasterol, and SB431542 with binding energy values of -5.7, -10, -9.4, and -10.9 kcal/mol, respectively. Similarly, they strongly bound to TβRII with binding energy values of -5.2, -7.1, -7.5, and -6.1 kcal/mol, respectively. All compounds meet Lipinski's criteria for druglikeness. Among the identified active compounds, campesterol exhibited the highest affinity for TβRI, while stigmasterol exhibited a strong affinity for TβRII. These findings suggested that the three compounds have potential as drug candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11530946PMC
http://dx.doi.org/10.22088/IJMCM.BUMS.13.3.234DOI Listing

Publication Analysis

Top Keywords

active compounds
12
active fraction
12
transforming growth
8
compounds active
8
potential drug
8
drug candidates
8
palmitic acid
8
acid campesterol
8
campesterol stigmasterol
8
binding energy
8

Similar Publications

Background: Synthesis of organic@inorganic hNFs is achieved by the coordination of organic compounds containing amine, amide, and diol groups with bivalent metals. The use of bio-extracts containing these functional groups instead of expensive organic inputs such as DNA, enzymes, and protein creates advantages in terms of cost and applicability. In this study, the application potentials (antioxidant, antibacterial, anticancer, guaiacol, anionic, and cationic dye degradation) of hybrid (organic@inorganic) nanoflowers (hNFs) synthesized with Cu and snakeskin (SSS) were proposed.

View Article and Find Full Text PDF

In this study, new cinnamic acid linked to triazole acetamide derivatives was synthesized and evaluated for anti-Alzheimer and anti-melanogenesis activities. The structural elucidation of all analogs was performed using different analytical techniques, including H-NMR, C-NMR, mass spectrometry, and IR spectroscopy. The synthesized compounds were assessed in vitro for their inhibitory activities against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase enzymes.

View Article and Find Full Text PDF

A modular approach to catalytic stereoselective synthesis of chiral 1,2-diols and 1,3-diols.

Nat Commun

January 2025

The Institute for Advanced Studies and Hongyi Honor College, Wuhan University, Wuhan, China.

Optically pure 1,2-diols and 1,3-diols are the most privileged structural motifs, widely present in natural products, pharmaceuticals and chiral auxiliaries or ligands. However, their synthesis relies on the use of toxic or expensive metal catalysts or suffer from low regioselectivity. Catalytic asymmetric synthesis of optically pure 1,n-diols from bulk chemicals in a highly stereoselective and atom-economical manner remains a formidable challenge.

View Article and Find Full Text PDF

Chronic/heavy exposure with ethanol is associated with risk of type 2 diabetes, due to β-cells dysfunction. It has been reported that ethanol can induce oxidative stress directly or indirectly by involvement of mitochondria. We aimed to explore the protective effects of the crocin/gallic acid/L-alliin as natural antioxidants separately on ethanol-induced mitochondrial damage.

View Article and Find Full Text PDF

The aim of this study is based on the searching of "new" potential environmentally friendly plant based products with herbicidal activity. The purpose of the study is also to find the source which is easy to harvest in high amount within the local environment. Salvia pratensis L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!