Large-scale investigation of dry orthogonal cutting experiments Ti6Al4V and Ck45.

Int J Adv Manuf Technol

Institute of Machine Tools and Manufacturing (IWF), Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland.

Published: October 2024

Unlabelled: The numerical simulation of metal cutting processes requires material data for constitutive equations, which cannot be obtained with standard material testing procedures. Instead, inverse identifications of material parameters within numerical simulation models of the cutting experiment itself are necessary. This report presents the findings from a large-scale study of dry orthogonal cutting experiments on Ti6Al4V (Grade 5) and Ck45 (AISI 1045). It includes material characterization through microstructural analysis and tensile tests. The study details the measurement of cutting insert geometries and cutting edge radii, evaluates process forces, deduces friction coefficients and coefficients for Kienzle's force model, and analyzes chip forms and thicknesses as well as built-up edge formation depending on the process parameters. The collected data, stored in pCloud, can support other researchers in the field, e.g. for recomputations within numerical models or inverse parameter identifications. The dataset includes force measurements, cutting edge scans, and chip images including longitudinal cross-sections of chips.

Supplementary Information: The online version contains supplementary material available at 10.1007/s00170-024-14597-2.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528021PMC
http://dx.doi.org/10.1007/s00170-024-14597-2DOI Listing

Publication Analysis

Top Keywords

dry orthogonal
8
orthogonal cutting
8
cutting experiments
8
experiments ti6al4v
8
numerical simulation
8
cutting edge
8
cutting
7
material
5
large-scale investigation
4
investigation dry
4

Similar Publications

Preparation and radon exhalation characteristics of fracture granite similar materials in Beishan underground research laboratory.

J Hazard Mater

January 2025

Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.

The mechanism of radon exhalation from surrounding rock fracture has important guiding significance for radon prevention and control in underground research laboratories. The optimal ratio scheme of similar materials in the granite surrounding rock of Beishan underground laboratory was obtained by orthogonal test. The radon exhalation characteristics of fractured rock samples under dry and saturated conditions were obtained by using 10 standard joint roughness coefficient (JRC) curves.

View Article and Find Full Text PDF

The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size-cell size allometry interacts with variation in biomass allocation (i.

View Article and Find Full Text PDF

Analysis of mechanical properties and energy evolution mechanism of frozen calcareous clay under multi-factor interaction.

Sci Rep

January 2025

The Fourth Engineering Co., LTD, China Railway Fourth Bureau, Hefei, 230012, People's Republic of China.

Research investigating the complex mechanical properties and energy evolution mechanisms of frozen calcareous clay under the influence of multiple factors is crucial for optimizing the artificial ground freezing method in shaft sinking, thereby enhancing construction quality and safety. In this study, a four-factor, four-level orthogonal test was devised, taking into account temperature, confining pressure, dry density, and water content. The complex nonlinear curvilinear relationship between deviatoric stress, volume strain, and axial strain of frozen calcareous clay under different interaction levels was analyzed.

View Article and Find Full Text PDF

Phyto-nanotechnology provides an eco-friendly approach for synthesizing biocompatible metal nanoparticles (NPs) with therapeutic potential. (LI) has been historically valued for its diverse medicinal applications, especially its exceptional biological potency against various skin diseases, attributed to its rich abundance of bioactive compounds. Therefore, herein, plant-based iron and zinc NPs were biofabricated via sustainable and simple methods, using crude extracts of the aerial parts of LI as reducing, coating, and stabilizing agents.

View Article and Find Full Text PDF

The Inner Mongolia section of the Yellow River is a seasonal frozen soil area, where the freeze-thaw effect can alter soil strength and compressibility, affecting bank stability. This study takes the banks sandy silt of the Inner Mongolia section of the Yellow River as the research object. It systematically investigates the relationship between shear strength parameters and compression index of sandy silt and the initial dry density, water content, and freeze-thaw cycles of the soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!