Hypoxia-inducible factor 1-alpha (HIF-1α) is necessary for cells to adapt to low oxygen levels often present in the tumor microenvironment. HIF-1α triggers a transcriptional program that promotes invasion, angiogenesis, metabolic reprogramming, and cell survival when it is active in hypoxic environments. These processes together lead to the growth and spread of tumors. This review article examines the molecular mechanisms by which HIF-1α contributes to tumor progression, including its regulation by oxygen-dependent and independent pathways, interactions with oncogenic signaling networks, and impact on the tumor microenvironment. Additionally, we explore current therapeutic strategies targeting HIF-1α, such as small molecule inhibitors, RNA interference, and immunotherapy approaches. Understanding the multifaceted roles of HIF-1α in cancer biology not only elucidates the complexities of tumor hypoxia but also opens avenues for developing novel and more effective cancer therapies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529905 | PMC |
http://dx.doi.org/10.7759/cureus.70700 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!