Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Introduction Nanotechnology has emerged as a vital field, particularly in synthesizing nanoparticles. Silver nanoparticles (AgNPs) are recognized for their strong antimicrobial properties against various pathogens, including and , due to their small size and high surface area. Green synthesis using plant extracts offers an eco-friendly alternative. The rise of multidrug-resistant bacteria underscores the urgent need for new antimicrobial agents. This study investigates the antibacterial activities of AgNPs (DC-AgNPs) against and , employing antimicrobial susceptibility testing (AST), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) assessments, along with nanoparticle characterization. Materials and method The antimicrobial activity ofDC-AgNPs was evaluated using clinical isolates of and . Bacterial inoculums were standardized to 0.5 MacFarlard (1.5 × 10 CFU/mL) and tested via a modified agar-well diffusion method. The MIC and MBC were determined using broth microdilution and sub-culturing methods, respectively. Characterization of the nanoparticles was conducted using Ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). Results and conclusion was identified as the plant used to synthesize AgNPs, confirmed by the University of Ilorin, Nigeria. Phytochemical screening revealed the presence of tannins, flavonoids, glycosides, and phenolics. The AgNPs were synthesized by adding the aqueous extract to silver nitrate, resulting in a color change. Characterization via UV-Vis spectrophotometry confirmed nanoparticle formation. Antimicrobial testing showed that DC-AgNPs effectively inhibited and , with minimum inhibitory concentrations of 125 μg and 250 μg, respectively, indicating their potential as antimicrobial agents.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531801 | PMC |
http://dx.doi.org/10.7759/cureus.70856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!