Synergistically active nanoparticles hold great promise for facilitating multimodal cancer therapy. However, strategies for their feasible manufacture and optimizing their formulations remain lacking. Herein, we developed hybrid homodimeric prodrug nanotherapeutics with tumor-restricted drug activation and chemophotodynamic pharmacology by leveraging the supramolecular nanoassembly of small molecules. The covalent dimerization of cytotoxic taxane chemotherapy via reactive oxygen species (ROS)-activated linker yielded a homodimeric prodrug, which was further coassembled with a ROS-generating dimeric photosensitizer. The nanoassemblies were readily refined in an amphiphilic PEGylation matrix for particle surface cloaking and in vivo intravenous injection. The nanoassemblies were optimized with favorable stability and combinatorial synergism to kill cancer cells. Upon near-infrared laser irradiation, the neighboring dimer photosensitizer generated ROS, subsequently triggering bond cleavage to facilitate drug activation, which in turn produced synergistic chemophotodynamic effects against cancer. In a preclinical model of melanoma, the intravenous administration of PEGylated nanoassemblies followed by near-infrared tumor irradiation led to significant tumor regression. Furthermore, animals treated with this efficient, photo-activatable nanotherapy exhibited low systemic toxicity even at high doses. This study describes a simple and cost-effective approach to integrate multimodal therapies by creating self-assembling small-molecule prodrugs for designing a combinatorial therapeutic nanosystem. We consider that this new paradigm holds substantial potential for advancing clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11529783 | PMC |
http://dx.doi.org/10.34133/bmr.0101 | DOI Listing |
Biomater Res
November 2024
The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, P. R. China.
Synergistically active nanoparticles hold great promise for facilitating multimodal cancer therapy. However, strategies for their feasible manufacture and optimizing their formulations remain lacking. Herein, we developed hybrid homodimeric prodrug nanotherapeutics with tumor-restricted drug activation and chemophotodynamic pharmacology by leveraging the supramolecular nanoassembly of small molecules.
View Article and Find Full Text PDFNanoscale
August 2024
Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
Adv Mater
January 2024
Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China.
Homodimeric prodrug nanoassemblies (HDPNs) hold promise for improving the delivery efficiency of chemo-drugs. However, the key challenge lies in designing rational chemical linkers that can simultaneously ensure the chemical stability, self-assembly stability, and site-specific activation of prodrugs. The "in series" increase in sulfur atoms, such as trisulfide bond, can improve the assembly stability of HDPNs to a certain extent, but limits the chemical stability of prodrugs.
View Article and Find Full Text PDFActa Pharm Sin B
August 2023
State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
Chemotherapy has occupied the critical position in cancer therapy, especially towards the post-operative, advanced, recurrent, and metastatic tumors. Paclitaxel (PTX)-based formulations have been widely used in clinical practice, while the therapeutic effect is far from satisfied due to off-target toxicity and drug resistance. The caseless multi-components make the preparation technology complicated and aggravate the concerns with the excipients-associated toxicity.
View Article and Find Full Text PDFiScience
August 2023
Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!