A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Engineering a Mesoporous Silicon Nanoparticle Cage to Enhance Performance of a Phosphotriesterase Enzyme for Degradation of VX Nerve Agent. | LitMetric

AI Article Synopsis

  • A novel enzyme-nanoparticle construct is created using phosphotriesterase (PTE) immobilized in a partially oxidized mesoporous silicon nanoparticle for breaking down nerve agents.
  • The enzyme@nanoparticle setup demonstrates twice the efficiency in hydrolyzing a model compound (DMNP) compared to the free enzyme, with pore hydration being crucial for optimal activity.
  • This construct maintains its activity over multiple cycles, is more stable against degradation, and effectively detoxifies the nerve agent VX while protecting AChE function in human blood tests, making it a promising tool for chemical decontamination.

Article Abstract

The organophosphate (OP)-hydrolyzing enzyme phosphotriesterase (PTE, variant L7ep-3a) immobilized within a partially oxidized mesoporous silicon nanoparticle cage is synthesized and the catalytic performance of the enzyme@nanoparticle construct for hydrolysis of a simulant, dimethyl p-nitrophenyl phosphate (DMNP), and the live nerve agent VX is benchmarked against the free enzyme. In a neutral aqueous buffer, the optimized construct shows a ≈2-fold increase in the rate of DMNP turnover relative to the free enzyme. Enzyme@nanoparticles with more hydrophobic surface chemistry in the interior of the pores show lower catalytic activity, suggesting the importance of hydration of the pore interior on performance. The enzyme@nanoparticle construct is readily separated from the neutralized agent; the nanoparticle is found to retain DMNP hydrolysis activity through seven decontamination/recovery cycles. The nanoparticle cage stabilizes the enzyme against thermal denaturing and enzymatic (trypsin) degradation conditions relative to free enzyme. When incorporated into a topical gel formulation, the PTE-loaded nanoparticles show high activity toward the nerve agent VX in an ex vivo rabbit skin model. In vitro acetylcholinesterase (AChE) assays in human blood show that the enzyme@nanoparticle construct decontaminates VX, preserving the biological function of AChE when exposed to an otherwise incapacitating dose.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202409535DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11672247PMC

Publication Analysis

Top Keywords

nanoparticle cage
12
nerve agent
12
enzyme@nanoparticle construct
12
free enzyme
12
mesoporous silicon
8
silicon nanoparticle
8
performance enzyme@nanoparticle
8
relative free
8
enzyme
6
engineering mesoporous
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!