A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Docking and in vitro Experimental Verification. | LitMetric

Study on the Mechanism of Alpinia officinarum Hance in the Improvement of Insulin Resistance through Network Pharmacology, Molecular Docking and in vitro Experimental Verification.

Curr Comput Aided Drug Des

Hepatobiliary and Liver Transplantation Department of Hainan Digestive Disease Center, Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan, China.

Published: November 2024

AI Article Synopsis

  • Non-alcoholic fatty liver disease and type 2 diabetes mellitus are linked to insulin resistance (IR), but there are no approved drugs to target IR, even though Alpinia officinarum (A. officinarum) may help with diabetes treatment.
  • The study aimed to identify the active components of A. officinarum and explore how it affects insulin resistance using network pharmacology and molecular docking, alongside in vitro testing on liver cells.
  • Researchers found 14 key active components in A. officinarum, with A14 being the most promising one, and revealed it may help reduce oxidative stress and improve insulin resistance via specific biological pathways.

Article Abstract

Background: Research has elucidated that the pathophysiological underpinnings of non-alcoholic fatty liver disease and type 2 diabetes mellitus are intrinsically linked to insulin resistance (IR). However, there are currently no pharmacotherapies specifically approved for combating IR. Although Alpinia officinarum Hance (A. officinarum) can ameliorate diabetes, the detailed molecular mechanism through which it influences IR has not been fully clarified.

Aims: To predict the active components of A. officinarum and determine the mechanism by which A. officinarum affects IR.

Methods: The active compounds and molecular mechanism underlying the improvement of IR by A. officinarum were predicted via network pharmacology and molecular docking. To further substantiate these predictions, an in vitro model of IR was induced in HepG2 cells using high glucose concentrations. Cytotoxicity and oxidative stress levels were evaluated using Cell Counting Kit-8, reactive oxygen species (ROS), malondialdehyde (MDA), and superoxide dismutase (SOD) assay kits. The putative molecular mechanisms were corroborated through Western blot and RT-PCR analyses.

Results: Fourteen principal active components in A. officinarum, 133 potential anti-IR gene targets, and the top five targets with degree values were ALB, AKT1, TNF, IL6, and VEGFA. A. officinarum was posited to exert its pharmacological effects on IR through mechanisms involving lipid and atherosclerosis, the AGE-RAGE signaling pathway in diabetic complications, the PI3K-AKT signaling pathway, fluid shear stress, and atherosclerosis. Intriguingly, network pharmacology analysis highlighted (4E)-7-(4-hydroxy-3-methoxyphenyl)-1-phenylhept-4-en-3- one (A14) as the most active compound. Molecular docking studies further confirmed that A14 has a strong binding affinity for the main targets of PI3K, AKT, and Nrf2. The experiments demonstrated that A14 significantly diminished the ROS and MDA levels while augmenting the SOD activity. Moreover, A14 was found to elevate the protein expression of PI3K, AKT, Nrf2, and HO-1, and increase the mRNA levels of these targets as well as NQO1.

Conclusion: A. officinarum could play a therapeutic role in IR through multiple components, targets, and pathways. The most active component of A. officinarum responsible for combating IR is A14, which has the ability to regulate oxidative stress in IR-HepG2 cells by activating the PI3K/AKT/Nrf2 pathway. These findings suggest a potential pharmacological intervention strategy for the treatment of IR.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0115734099325919241025023026DOI Listing

Publication Analysis

Top Keywords

network pharmacology
12
molecular docking
12
officinarum
10
alpinia officinarum
8
officinarum hance
8
insulin resistance
8
pharmacology molecular
8
molecular mechanism
8
active components
8
components officinarum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!