This study presents a comprehensive performance and forecasting analysis of the As-Samra wastewater treatment plant (WWTP) in Jordan, with two main objectives. Firstly, a thorough evaluation of the plant's performance is conducted. The analysis involves independently assessing historical operational conditions, plant production, and their statistical correlations using various statistical techniques. The second objective focuses on developing a data-driven forecasting approach to predict the plant's production one month in advance, using multiple machine learning models. The results highlight the effectiveness of principal component analysis (PCA) in simplifying operational data, revealing distinct operational clusters, and identifying seasonal production patterns while showing correlations between operational conditions and overall power production. The support vector machine (SVM) forecasting model emerged as the top performer, showcasing the potential of a hybrid forecasting approach. The findings offer valuable perspectives for enhancing operational efficiency, refining production planning, and ultimately improving the environmental impact of the plant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2023.129937 | DOI Listing |
Sci Rep
December 2024
Industrial and Systems Engineering Department, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia.
The framework of the methodology presented in this study is an effort to integrate and optimize the agro-industry sector, especially energy in biogas. In this study, the technique of the system in functional analysis is shown systematically to translate various energy requirements in the factory as criteria for performance and functional design to be integrated, optimized, and energy efficient. The case study results indicated that biogas power plants, with a capacity of 1.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Nano-Chemical Engineering, Faculty of Advanced Technologies, Shiraz University, Shiraz, Iran.
MXene-based (nano)materials have recently emerged as promising solutions for antibiotic photodegradation from aquatic environments, yet they are limited by scalability, stability, and selectivity challenges in practical settings. We formulated FeO-SiO/MXene ternary nano-photocomposites via coupled wet impregnation and sonochemistry approach for optimised tetracycline (TC) removal (the second most used antibiotic worldwide) from water using response surface methodology-central composite design (RSM-CCD). The photocatalysts containing various loading of FeO/SiO (5-45 wt%) on the MXene with a range of calcination temperatures (300-600 °C) via RSM optimisation were synthesised, characterised regarding crystallinity properties, surface morphology, binding energy, and light absorption capability, and analysed for TC degradation efficiency.
View Article and Find Full Text PDFSci Rep
December 2024
School of Public Administration, Guangzhou University, Guangzhou, 510006, China.
With the accelerated urbanization and economic development in Northwest China, the efficiency of urban wastewater treatment and the importance of water quality management have become increasingly significant. This work aims to explore urban wastewater treatment and carbon reduction mechanisms in Northwest China to alleviate water resource pressure. By utilizing online monitoring data from pilot systems, it conducts an in-depth analysis of the impacts of different wastewater treatment processes on water quality parameters.
View Article and Find Full Text PDFEnviron Monit Assess
December 2024
Environmental Technology Division, CSIR - National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, India, 695019.
The study presents findings from physico-chemical and elemental analyses of fresh faecal matter from a residential apartment in Thiruvananthapuram, Kerala, India. Samples were taken every 8-10 days over 4 months to account for variability and establish baseline data. The study also examines the influence of dietary patterns and toilet cleaners on faecal sludge properties.
View Article and Find Full Text PDFSci Rep
December 2024
Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A, Grigore Ghica Voda Alley, 700487, Iasi, Romania.
One of the biggest issues of wide bandgap semiconductor use in photocatalytic wastewater treatment is the reusability of the material and avoiding the contamination of water with the material itself. In this paper, we report on a novel TiO aeromaterial (aero-TiO) consisting of hollow microtetrapods with ZnTiO inclusions. Atomic layer deposition has been used to obtain particles of unique shape allowing them to interlock thereby protecting the photocatalyst from erosion and damage when incorporated in active filters.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!