The study of land subsidence has recently been expanded due to its increased occurrence and magnitude worldwide. This paper develops and applies an optimal control model of groundwater extractions under conditions of land subsidence. We include, in a traditional groundwater management model, two types of negative externalities associated with land subsidence: damage to infrastructure and to economic activities, and the loss of aquifer storage capacity. Using a two-stage optimal control method, characterized by two sub-problems corresponding to the phase before and after the occurrence of subsidence, we find the economically sustainable paths of groundwater extractions and water table levels under the existence of land subsidence impacts. The theoretical results indicate that the presence of land subsidence dictates the optimal paths of groundwater withdrawals and water table levels. The model has been applied to the Alto Guadalentín over-exploited aquifer system in the Segura River Basin of Spain. The empirical outcomes indicate that by following the optimal paths, groundwater extractions should be curtailing to avoid reaching the critical water level at which subsidence takes place. Results suggest that regional net present value of welfare over the planning period, under the two land subsidence scenarios, is reduced by nearly 1-5%, compared to the no land subsidence scenario. Furthermore, under subsidence, even with relatively small impacts of both types of externalities, groundwater optimal extractions are kept at levels that avoid these externalities. These outcomes clearly call for government intervention in order to reduce groundwater withdrawals in aquifers with propensity to face undesirable subsidence effects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.119333DOI Listing

Publication Analysis

Top Keywords

land subsidence
32
subsidence
12
groundwater extractions
12
paths groundwater
12
land
8
optimal control
8
water table
8
table levels
8
optimal paths
8
groundwater withdrawals
8

Similar Publications

Identification of subsurface cavities in urban environment.

Sci Rep

January 2025

Center of Astronomy, Astrophysics and Geophysics Research, Route de l'Observatoire, Bouzaréah, Alger, 16340, Algeria.

Gravimetry is the most suitable geophysical method for identifying subsurface cavities in urban or industrial environments, as it is unaffected by nearby electromagnetic disturbances. In this study, we used gravimetric geophysical method to understand the land subsidence, collapses, and fissures observed around the sealed Albian drilling site located in the M'Rara region of Northeast of Algeria. Particularly, we would like study the geological observed phenomena and its potential association with the presence of a cavity within the salt layer.

View Article and Find Full Text PDF

This study presents an integrated framework that combines spatial clustering techniques and multi-source geospatial data to comprehensively assess and understand geological hazards in Hunan Province, China. The research integrates self-organizing map (SOM) and geo-self-organizing map (Geo-SOM) to explore the relationships between environmental factors and the occurrence of various geological hazards, including landslides, slope failures, collapses, ground subsidence, and debris flows. The key findings reveal that annual average precipitation (Pre), profile curvature (Pro_cur), and slope (Slo) are the primary factors influencing the composite geological hazard index (GI) across the province.

View Article and Find Full Text PDF

Subsidence lakes, formed due to extensive underground coal mining activities, present both ecological challenges and opportunities for alternative land use practices, such as photovoltaic power generation and aquaculture. However, the ecological consequences of these anthropogenic activities on bacterial communities within subsidence lakes remain largely unexplored. To address this knowledge gap, we conducted a comprehensive investigation of bacterial communities in two typical subsidence lake districts located in Huainan, Anhui Province, China.

View Article and Find Full Text PDF

Coastal areas undergo continuous transformations, altering their geometry under the influence of external forces like tides, waves, and extreme events. Thus, monitoring the impact of extreme weather events on coastal regions is crucial to prevent potential cascading hazards. Here, we utilized time-series optical and SAR satellite data and tide records, coupled with sophisticated analytical techniques, to analyze erosion processes, sediment transport, and vertical land movement (VLM) at an embayed sandy beach (i.

View Article and Find Full Text PDF

Archaeological sites in deltaic regions face increasing environmental threats. This study provides the first assessment of seawater intrusion and land subsidence impacts on archaeological sites in the Nile Delta through hydrochemical investigations, InSAR techniques, and multi-criteria decision analysis of 33 sites. The results reveal that 80.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!