Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study introduces a cutting-edge, high-resolution tool leveraging the predictive prowess of convolutional neural networks to advance the field of hazard assessment in urban pluvial flooding scenarios. The tool uniquely accounts for the high heterogeneity of urban space and the potential impact of complex climate scenarios, which are often underestimated by traditional data-reliant methods. Employing Shenzhen as a case study, the model showcased superior accuracy, resilience, and interpretability, illuminating potential flood hazards. The performance analysis shows that the model can accurately predict the vast majority of urban flood depths, but has errors in extreme flood predictions (depths greater than 35 cm). Findings underscore escalating flood impacts under enhanced scenario loads, with western and central Shenzhen-regions rife with construction-highlighted as particularly vulnerable. Under the most severe matrix scenario (Scenario 25), economic losses are estimated to be about $25,484 million. These commercial and residential hotspots are anticipated to suffer maximum economic loss, with these two areas accounting for 39.6% and 25.1% of the total losses, necessitating reinforced mitigation efforts, especially during extreme rainfall events and high soil saturation levels. In addition, the flooding control strategies should prioritize the reduction of flood inundation areas and integrate functionally oriented land use characteristics in their development. By aiding in the precise identification of flood-prone areas, this research expedites the development of efficient evacuation plans, bolsters urban sustainability, and augments climate resilience, ultimately mitigating flood-induced economic tolls.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2023.119470 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!